This project report is a summary of the information provided by the Restoration Explorer and is a complimentary planning tool during the initial steps of developing a living shoreline project. The Restoration Explorer is a first-level screening tool. Therefore, the report is intended to help municipal decision-makers plan a successful project by providing key information necessary to move forward with living shoreline projects. Once a project has been identified, the information in this report can be used in consultation with engineers and ecologists during the initial planning stages of implementing the project.

Please be aware that living shoreline techniques suggested by the Restoration Explorer will require Federal, State, and local regulatory approvals. The Nature Conservancy and its partners make no representation that potential projects will gain all required Federal, State or local approvals. Before engaging in design work, please contact Steve Jacobus at New Jersey’s Coastal Land Use Office and local building officials for more specific information and guidance about the permits or other approvals which may be needed.

For additional information on key next steps for implementing living shorelines projects, please refer to NOAA’s “Guidance for Considering Living Shorelines 2015” which describes 12 guiding questions and answers for communities that can be used to determine the best approach to stabilize the shoreline and sustain coastal connections between land and water. In addition, for more information on the design process and engineering requirements for living shorelines, refer to Stevens Institute of Technology’s (SIT) Guidelines to Living Shorelines.

Municipal Shoreline Summary: The coast of Linwood, NJ is heavily populated by marsh habitat. Ninety nine percent of the 20.3 miles of coastline consists of marsh habitat. Across the township, approximately 41% of the coastline has been experiencing shoreline loss due to erosion. More information on the miles of shoreline that are suitable for different living shoreline techniques can be found within the Restoration Explorer. It can also be found via the Municipal Summary provided by the Restoration Explorer, which is also attached to this report.

Proposed Living Shoreline Locations:
- Hamilton Avenue boat ramp
- Seaview boat dock

Further, as a result of conversations with members of the Linwood Environmental Commission, another location is briefly outlined in this report as an additional area to consider nature-based solutions to create a more natural vegetated transition from the marsh edge to open water.

Project Goals:
- Absorb wave energy along high traffic boat areas
- Reduce shoreline erosion
- Enhance habitat benefits

Figure 1. Citywide view of project locations.

Recommended Living Shoreline Technique: A living shoreline project that would seek to address erosion along the marsh shoreline at the Hamilton Avenue boat ramp and Seaview boat dock would need to include a habitat enhancement technique that is capable of attenuating moderate tidal energy and mild boat wakes. In addition, living shoreline considerations should also take into account improved viewscapes and socioeconomic factors that might lead to an increase in the use of both boat ramps, such as the creation of new fish foraging areas. These circumstances lend to the consideration of implementing living shoreline techniques that incorporate natural vegetation, such as Smooth Cordgrass (*Spartina alterniflora*) and biodegradable organic materials (coir fiber logs) and sediment for filling low-lying areas. Therefore, this report reviews the applicability of using a nature-based living shoreline technique adjacent to both boat ramps to stabilize and ecologically enhance the marsh shoreline.

Nature-Based Living Shorelines (Figure 2) are best in low-energy areas. “Biological enhancements” like biodegradable fiber logs (which also provide habitat for ribbed mussels) are placed along the tidal marsh edge to provide a contained area for sediment to accumulate and marsh vegetation to grow. A nature-based living shoreline is the most ‘natural’ solution recommended by the Restoration Explorer, and can provide communities with benefits associated with healthy coastal habitats, including wave attenuation, improved water quality, and increased habitat.
Figure 2. Graphic depiction of a nature-based living shoreline technique.

Project Area #1 – Hamilton Avenue Boat Ramp: The project is proposed to help the marsh near the boat ramp keep pace with sea-level rise and reduce erosion impacts. It will encompass approximately 300ft. - 400 ft. along the marsh shoreline of Patcong Creek, southeast of the Hamilton Avenue boat ramp.

![Figure 3. Street Map of Project Area #1](image)

![Figure 4. 3-D Aerial View of Project Area #1](image)

Shoreline Condition of Project Area #1
Along the shoreline of the proposed project area the Restoration Explorer shows that erosion rates are between 1ft.- 3ft./year since 1977 (Figure 5). Due to the rate at which the marsh is eroding, and in an effort to meet the project’s aesthetic and habitat enhancement goals, biodegradable coir material logs and native replanting of vegetation are included as recommended banks stabilization techniques for this proposed living shoreline project.
Figure 5. Average erosion rate of project site (from 1977-2012).

Figure 6. Restoration Explorer information on the applicability of a nature-based living shoreline at the proposed project location.

Nature-Based Living Shoreline Environmental Conditions
The implementation of a nature-based living shoreline along the selected project area meets key environmental conditions as outlined by the Restoration Explorer. A table describing the ways in which these considerations are met is included below.
<table>
<thead>
<tr>
<th>Environmental Condition</th>
<th>Environmental Conditions met</th>
<th>Applicable Range for NBLS</th>
<th>Project location information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erosion Shoreline Change</td>
<td>Yes</td>
<td>0ft. – 4ft. /yr.</td>
<td>1ft.- 3ft. /yr.</td>
</tr>
<tr>
<td>Tidal Range</td>
<td>No</td>
<td>0 – 4ft.</td>
<td>4.3ft.</td>
</tr>
<tr>
<td>Salinity</td>
<td>Yes</td>
<td>3 – 30 ppt.</td>
<td>13.4 ppt.</td>
</tr>
<tr>
<td>Wave Height</td>
<td>Yes</td>
<td><1 ft.</td>
<td>0ft.</td>
</tr>
<tr>
<td>Ice Cover</td>
<td>Yes</td>
<td>Low - Moderate</td>
<td>None - Low</td>
</tr>
<tr>
<td>Shoreline Slope</td>
<td>Depends on selected 10x10 meter square</td>
<td>0 - 10%</td>
<td>2% - 19%</td>
</tr>
<tr>
<td>Nearshore Slope</td>
<td>Depends on selected 10x10 meter square</td>
<td>0 - 10%</td>
<td>7% – 13%</td>
</tr>
</tbody>
</table>

Project Area #2
The entire project area encompasses approximately 200ft eastward of the Seaview boat dock and approximately 50ft westward of the Seaview boat dock. The project will seek to help the marsh edge keep pace with sea level rise as well as absorb tidal energy and wakes from boating.

![Figure 7. Street Map of Project #2](image)
Shoreline Condition of Project Area #2
Along the shoreline of the proposed project area the Restoration Explorer shows that erosion rates are between 1ft.- 3ft. /year since 1977 (Figure 9). Due to the rate at which the marsh is eroding, and in an effort to meet the project’s aesthetic and habitat enhancement goals, biodegradable coir material logs and native replanting of vegetation are included as recommended banks stabilization techniques for this proposed living shoreline project.

Figure 9. Average erosion rate of project site (from 1977-2012).
Nature-Based Living Shoreline Environmental Conditions

The implementation of a nature-based living shoreline along the selected project area meets key environmental conditions as outlined by the Restoration Explorer. A table describing the ways in which these considerations are met is included below.

<table>
<thead>
<tr>
<th>Environmental Condition</th>
<th>Environmental Conditions met</th>
<th>Applicable Range for NBLS</th>
<th>Project location information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erosion Shoreline Change</td>
<td>Yes</td>
<td>0ft. – 4ft. /yr.</td>
<td>1ft. - 3ft. /yr.</td>
</tr>
<tr>
<td>Tidal Range</td>
<td>No</td>
<td>0 – 4ft.</td>
<td>4.4ft.</td>
</tr>
<tr>
<td>Salinity</td>
<td>Yes</td>
<td>3 – 30 ppt.</td>
<td>29.5 ppt.</td>
</tr>
<tr>
<td>Wave Height</td>
<td>Yes</td>
<td><1 ft.</td>
<td>0.6ft.</td>
</tr>
<tr>
<td>Ice Cover</td>
<td>Yes</td>
<td>Low - Moderate</td>
<td>None</td>
</tr>
<tr>
<td>Shoreline Slope</td>
<td>Depends on selected 10x10 meter square</td>
<td>0 - 10%</td>
<td>1% - 18%</td>
</tr>
<tr>
<td>Nearshore Slope</td>
<td>Depends on selected 10x10 meter square</td>
<td>0 - 10%</td>
<td>4% – 17%</td>
</tr>
</tbody>
</table>

Rationale for a nature-based living shoreline at the proposed locations

This habitat enhancement technique will seek to improve bank stabilization and vertically increase sediment accretion helping to reduce erosion. Moreover, a nature–based living shoreline will help to bolster marsh habitat and native vegetation by providing a sheltered environment for regrowth. Additionally, organic material can accumulate along the shell bags or stone containment used for coir log stabilization. As a result native fish populations can use these areas
as nursery environments, and native birds can be found utilizing the restoration area as foraging areas. Promoting a more resilient coastline along the project area will help to support habitat resilience in the face of coastal hazards while providing enhanced viewscapes for promoting recreational activities.

Additional location to consider nature-based solutions

- Along Patcong Creek between Central Ave. and Bartlett Ave.

Project Goals:

- Absorb wave energy
- Mitigate potential nuisance flooding
- Enhance habitat benefits

![Figure 11. Street map of additional location to consider nature-based solutions](image-url)
Figure 12. Restoration Explorer information on the applicability of a nature-based living shoreline at the proposed project location.

Figure 13. Average erosion rate of project site (from 1977-2012).

Rationale for a nature-based living shoreline at the proposed locations
Although the Restoration Explorer does not show significant shoreline loss along the additional locations to consider nature based techniques, local knowledge indicates that nuisance flooding at high tide and an increase in marsh conversion to mud flat could present a reason to investigate the site the further. A nature-based living shoreline technique could help to increase vertical sediment accretion along the marsh edge. Additionally, this technique could help to reestablish a naturally vegetated shoreline in areas where nuisance flooding is potentially occurring.

Recommendations for additional data collection
Various small segmented areas (10x10 meter areas) in both project locations that might be suitable for a nature-based living shoreline have a shoreline slope, tidal range, and/ or nearshore slope that fall slightly outside the most applicable thresholds for the implementation of this technique. However, exceeding these thresholds does not completely negate the effectiveness of this restoration technique throughout some (if not all) of the area, but addressing these concerns with an engineer is highly recommended in order for the project to function effectively.
Nature-based living shorelines designs are carefully engineered to take into consideration numerous factors such as the effects of wave action on adjacent shorelines, bathometry of the area, and fetch. Moreover, the proposed project needs to be assessed based on a variety of other conditions like sedimentation and accessibility to the locations. Part of the design process should include consulting with engineers and ecologists to verify the conditions at the project site and provide site-specific design recommendations including the verification of the tidal range, slope of the shoreline, and wave energy at the site, among other key design criteria. Stevens Institute of Technology has created engineering guidelines that can help to inform your design process.

Municipal Planning
Incorporating living shoreline projects into municipal plans can help to facilitate project implementation by opening up funding opportunities and/or providing a community with the ability to budget for a future project. Updates and revisions to municipal coastal resilience measures, such as shoreline restoration and enhancement strategies, are becoming more easily adapted into local planning efforts. For example, the New Jersey Municipal Land Use Law (MLUL) requires each municipality in the State to review and update its local master plan regularly. This affords an opportunity to include shoreline restoration and enhancement strategies not only in Linwood’s master plan but also in municipal floodplain management and hazard mitigation plans. Inclusion of living shoreline strategies into different municipal plans can also benefit Linwood’s ability to budget and apply for State and Federal funding opportunities including, but not limited to, opportunities from the Federal Emergency Management Agency’s (FEMA) Hazard Mitigation Assistance, Pre-Disaster Mitigation, and Flood Mitigation Assistance programs. Communities that participate in FEMA’s National Flood Insurance Program’s Community Rating System can also receive discounted flood insurance premium rates to reward community actions.

Estimated Costs
The cost of a living shoreline project will vary based on size, location and complexity. The average cost data included in the table below are sample estimates for the materials of living shorelines (adapted from Seachange Consulting, 2011, Rella, A., & Miller, J. Ph.D., 2012, and Hafner, S., 2012). The cost information is presented to show how costs for one technique might compare relative to another technique and, therefore, should only be used as a guide. Additional research will be necessary to craft a full project budget.

- Engineering and design of project*
- Labor associated with the construction of the living shoreline;
- Shipping of materials;
- Additional vegetation needed for post-project for replanting,
- Accessibility and procurement of bagged shell, oyster castle material, and stone,
- Annual or bi-annual project maintenance (e.g., additional vegetation plantings, removal of debris at the project site, possible repositioning of structural project components)

*The design cost is also heavily dependent on the amount of site specific information provided to the engineering firm, and the complexity of the proposed project. Please consult engineering and design firms for more accurate estimates.
<table>
<thead>
<tr>
<th>Living Shoreline Technique</th>
<th>Estimated Cost</th>
<th>Additional factors to consider</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature-Based Living Shoreline</td>
<td>Coir Log (coconut fiber) 12” X 12’</td>
<td>$100.00 - $150.00 per log</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This is the most natural shoreline restoration option but it is only applicable in low energy areas. Factors to consider include labor, shipping, size of the project, accessibility to bagged shell, and the procurement of a coir log. In addition, the state of New Jersey does not currently allow oysters to be “planted” in waters closed to shellfish harvest.</td>
</tr>
<tr>
<td>Bulkhead</td>
<td>$80-$1,200 per linear ft.</td>
<td>Hard armoring traditional approach. (Non-nature based technique). Wave energy is reflected and not absorbed, which can result in bottom scour and loss of vegetation. Natural shoreline is eliminated, resulting in a loss of upland and shallow water habitat.</td>
</tr>
</tbody>
</table>

Potential Funding Sources

Although project funding can’t be guaranteed, resources are available for communities to explore. An initial list of potential grant opportunities is provided below. Additional information can be found by following the hyperlink for each program.

- **NOAA Regional Coastal Resilience Grants Program** - The NOAA Regional Coastal Resilience Grants Program is centered on helping communities increase preparedness and improve coastal resiliency measures. This program is applicable to nonprofit organizations, institutions of higher education, regional organizations, private (for profit) entities, and local, State, and tribal governments organizations that work toward resiliency strategies for land and ocean use, disaster preparedness, environmental restoration, and hazard mitigation projects benefiting coastal communities in one or more of the 35 U.S. coastal States or territories. In addition, awards range from $500,000 to $1 million for projects lasting up to 36 months.

- **The Department of the Interior Fish and Wildlife Service, Coastal Program** – The Department of the Interior Fish and Wildlife Service, Coastal Program utilizes the tax revenue from hunting, boating, and fishing in order to reinvest in conservation and coastal wetland ecosystems. A primary goal of the program is centered on seeking to help mitigate flooding and increase water quality. Most recently this program has helped to provide $21 million dollars in grant funding in order to help improve more than 11,000 acres.

- **U.S. Environmental Protection Agency (EPA) Urban Waters Small Grants Program** – The U.S. EPA funding opportunity addresses urban runoff pollution to best serve community
health benefits, with emphasis on underserved communities with award amounts of up to $60,000. The proposed project must take place entirely within one of the Eligible Geographic Areas. This program helps to influence how healthy and accessible urban waters can help to grow local businesses and enhance educational, recreational, and social and employment opportunities.

- **New Jersey State Department of Environmental Protection (NJDEP) - Shore Protection Grants and Loans program** - In an effort to protect existing development from sea-level rise, this NJDEP funding opportunity offers a cost share program whereby 25% of the cost is municipally funded & 75% of the cost is State funded. Loans are available from the State for the 25% of the cost owed by the municipality. For additional questions regarding qualification for this program contact the NJDEP-Office of Engineering and Construction.

- **The New Jersey Corporate Wetlands Restoration Project** - The New Jersey Corporate Wetlands Restoration Project is a public-private partnership that works to help fund a multitude of restoration work including living shorelines. The project must be located in New Jersey, have a federal partner, and meet a request for funding generally below $25,000.00. Each project will need to include the submittal of the NJCWRP Project Executive Summary Sheet and include a project location map. For examples and templates of submittal forms click here.

- **Environmental Solutions for Communities Initiative** - Wells Fargo and NFWF are providing grants ranging from $25,000 to $100,000 to localities for sustainability projects. Wells Fargo and NFWF are supporting engagement with at least 4-8 neighborhoods with the goal of helping these communities become more sustainable through conserving critical land and water resources, improving local water quality, and restoring and managing natural habitat, species, and ecosystems.

Project Permitting
All living shoreline projects in New Jersey are subject to state and federal permitting requirements. It’s recommended to consult with relevant permitting agencies early in your planning process (prior to the completion of formal designs) to ensure that the potential project can be permitted. Should there be any issues with conceptual designs, representatives from the State and federal agencies can provide recommended changes to the project design to help ensure a smooth permitting process.

State Permitting Requirements: [N.J.A.C. 7:7 Coastal Zone Management Rules](#). This regulation enables living shoreline projects to be implemented under the State of New Jersey Department of Environmental Protection Division of Land Use Regulation. Lawfully this provision is recognized as Coastal General Permit 24 (N.J.A.C. 7:7-6.24.) With questions or concerns regarding regulations and permitting contact the NJDEP Coastal Land Use Office.

Federal Army Corps of Engineers (USACE) Permit: Depending on the goals and design of a living shoreline project, it will need either a “nationwide” or “individual” permit before construction can begin. [Nationwide Permit 13 (NWP-13)](#) is centered on shoreline bank stabilization. A Pre-Application Meeting Request Form is required to be
completed before the NWP-13 application. In addition, the Individual Permit Application Submittal Form is a complementary procedure and only should be completed if the Nationwide Permit is not applicable for a specific project. For more information on the different permits and necessary forms, visit the USACE webpage.

NJ Bureau of Tidelands Licensing Requirements: The State of New Jersey has ownership of Tidelands public lands. Tidelands are considered to be land currently and previously flowed by the mean high tide of a natural waterway. Written permission from the State and a fee are required in order to use these lands. A Tidelands license or lease is required for submerged structures that are constructed off shore, and are situated anywhere from the tidelines line landward (i.e. Breakwaters, Living Reef Breakwaters).

Additional Considerations
• Additional factors are discussed in the Stevens Institute of Technology (SIT): Guidelines to Living Shorelines.
• Consider the feasibility of public access in relation to developing a project with a goal of enhancing economic development.
• Impacts to adjacent properties should be considered when identifying living shoreline project areas. Shifts in wave energy and bottom scour can result in negative unforeseen consequences to neighboring locations if not examined properly.
• Project planners should engage State officials early in preparatory project stages when considering to plant and/or seed commercial shellfish species.
• All living shoreline projects also require a letter of approval from the land owner or land manager. Make sure to discuss property boundaries and relevant local concerns with local municipal officials.

Next Steps
Local conservation organizations can be helpful advisors to municipalities that are interested in pursuing a living shoreline project. It’s most useful to consult with local conservation groups and State permitting officials early in the planning process for a living shoreline project to ensure the highest likelihood of success: An effective planning process should include the steps below. These are not necessarily in order, but each is important to address at some point in your planning process.

Engage property owner. The owner of the property should be included in the planning and implementation of a living shoreline project from the outset to both minimize conflict and maximize project success.

Set project goals. Goal setting should take priority in the planning process, as it informs project design and monitoring. Determine what the project seeks to achieve (e.g., reduce erosion, reduce tidal flooding, etc.) and note the existing environmental conditions.

Determine a timeline. Understanding time constraints for permitting and construction will heavily determine the timing of the funding, design, permitting, construction and monitoring. Be sure to note all fixed dates for funding applications and consult with
conservation groups or state or federal wildlife management agencies about the best time of year to start a project to avoid disrupting migratory birds and fish.

Identify project partners. Project partners can assist with design, implementation, monitoring and maintenance of the site. This can include conservation groups as well as community organizations interested in volunteering time and resources to the project.

Determine permitting requirements. Consult with municipal, state and federal officials to discuss project feasibility and permitting requirements. It is highly recommended to engage the NJDEP Coastal Land Use Office and the U.S. Army Corps of Engineers during the early planning stages of the project.

Develop your project budget and potential funding sources. Budgets for living shoreline projects can vary greatly depending on size and scope. Contact funding sources to determine the most applicable possibilities, timelines for proposal submission, and how the timelines of funding sources match up with your project timeline.

Determine site conditions and develop project design. Work with engineers and marine contractors to gather information on the project site and develop specific project designs. The RE data should only be used as a screening tool. Collecting site specific information is critical to engineering and design.

Develop a monitoring plan. For guidance on developing a monitoring plan you can refer to “A Framework for Developing Monitoring Plans for Coastal Wetland Restoration and Living Shoreline Projects in New Jersey,” which can be found at the Coastal Resilience Resources webpage.

Plans for project construction. Contact marine contractors to determine a construction schedule, access to materials, and pricing. Also, conduct site visits during preparation stages to monitor conditions. In preparation for the installation of the project, work with local conservation organizations to best coordinate volunteers, the construction schedule, preliminary site work, tools, access to the site, and to galvanize media attention.
Living Shoreline Snapshot

Linwood City, Atlantic County

What is a living shoreline?

A living shoreline is a nature-based alternative to bulkheads to address coastal erosion by providing for the protection, restoration or enhancement of these habitats. As indicated by NJDEP, this is accomplished through the strategic placement of plants, stone, sand, or other structural and organic materials. Natural living shorelines include natural vegetation, submerged aquatic vegetation, fill, and biodegradable organic materials (see graphic below). Hybrid living shorelines incorporate natural vegetation, submerged aquatic vegetation, fill, biodegradable organic materials, and low-profile rock structures such as segmented sills, stone containment, and living breakwaters seeded with native shellfish. Structural living shorelines include, but are not limited to, revetments, breakwaters, and groins. Additional information on different types of living shorelines can be found on the NJDEP webpage (PDF). (http://www.nj.gov/dep/cmp/docs/living-shorelines-engineering-guidelines-final.pdf)

DISCLAIMER: Living shoreline projects have a variety of ecological and engineering requirements and can often be mixed and match to tailor projects designs to local conditions. It is important to consult with ecologists and engineers to determine the specific design requirements for any proposed project. It is also important to consult with federal, state and local officials regarding permitting requirements. Resources are listed below.

Nature-Based Living Shoreline

Nature-based living shorelines are best in low-energy areas. “Biological enhancements,” like biodegradable fiber logs (which also provide habitat for ribbed mussels) or Christmas trees, are placed along the tidal marsh edge to provide a contained area for sediment to accumulate and marsh vegetation to grow. In more moderate energy areas, it might be possible to use a hybrid approach that pairs nature-based living shorelines with living reef breakwaters.

Coastal Shoreline Condition

Identifying how the shoreline is changing and how fast provides important background for a living shoreline project and can help to ensure a living shoreline project’s success. Understanding existing shoreline environmental parameters helps to better conceptualize enhancement techniques that can be applied.

<table>
<thead>
<tr>
<th>Shoreline Length (Miles)</th>
<th>Erosion Rates (Miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total: 20.3</td>
<td></td>
</tr>
<tr>
<td>20.1 99%</td>
<td>8.2 40%</td>
</tr>
<tr>
<td>0.2 1%</td>
<td>10.9 53%</td>
</tr>
</tbody>
</table>

Marsh Upland Low Moderate High None/Accretion
Promoting The Most ‘Natural’ Solution
Determining which living shoreline techniques are applicable for a given area is based on ecological and engineering requirements. Each technique varies in both design and implementation. The graphs below highlight the applicability of each shoreline enhancement technique per the available miles of coastline. When suitable, the more ‘natural’ solutions will provide communities with the multiple benefits associated with healthy coastal habitats, including wave attenuation, improved water quality and increased habitat for important fish species. For instance, when applicable, the greatest environmental benefit is achieved through the implementation of a Nature-Based Living Shoreline instead of an Ecologically Enhanced Revetment. Click here (http://coastalresilience.org/) to learn more.

<table>
<thead>
<tr>
<th>Miles of Marsh Technique (20.1 miles total)</th>
<th>Miles of Upland Technique (0.2 miles total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakwater</td>
<td>Beach</td>
</tr>
<tr>
<td>Living Reef</td>
<td>Breakwater</td>
</tr>
<tr>
<td>NBLS</td>
<td>Living Reef</td>
</tr>
<tr>
<td>Revetment</td>
<td>Revetment</td>
</tr>
<tr>
<td>Sill</td>
<td></td>
</tr>
</tbody>
</table>

What Habitat Exists?
Coastal habitats provide important storm and flood buffering benefits as well as serve as critical wildlife habitat and public open space. While our tidal marshes have some protection from dredging, filling and development by New Jersey’s pioneering Coastal Wetlands Protection law of 1970, some loss still occurs. Between 1986 and 2012, 69 acres of tidal marsh have been lost in Linwood City due to human development and/or natural processes.

Amount of Land Use/Land Cover (acres) Total: 2791 ac

- Coastal Wetlands: 836 ac
- Interior Wetlands: 35 ac
- Beaches/Dunes: 53 ac
- Developed: 404 ac
- Barren: 12 ac
- Agriculture: 1451 ac
- Forest: 836 ac
- Water: 35 ac
Implementing Living Shoreline Projects
The Restoration Explorer is an on-line decision support tool designed to help community leaders during the initial steps of planning a living shoreline project. The Restoration Explorer helps users to identify nature-based coastal resilience techniques to stabilize New Jersey's shorelines. Community leaders can utilize the Restoration Explorer and other applications on the Coastal Resilience tool as a platform to discuss the ways in which local concerns can be addressed through the implementation of living shorelines.

However, please be aware that living shoreline techniques suggested by the Restoration Explorer may require Federal, State, and local regulatory approvals and The Nature Conservancy makes no representation that potential projects will gain all required Federal, State or local approvals. Before engaging in design work, please contact New Jersey's Coastal Land Use Office (http://www.nj.gov/dep/lum/lup.htm) and local building officials for more specific information and guidance about the permits or other approvals which may be needed.

Next Steps
Not all restoration techniques are applicable for every community. It is important to recognize that the success of a living shoreline project is contingent upon recognizing relevant ecological and engineering considerations, funding requirements, and municipal planning scenarios.

1. **Contact local conservation groups and engage engineers.** Working closely with conservation organizations is a good way to ensure that all ecological considerations are well addressed. Conservation organizations can help to provide ecological expertise along with advice regarding permitting and construction (Click here (http://delawareestuary.org/living-shorelines) to view the Partnership for the Delaware Estuary’s webpage about working with living shorelines). It is also important to consult with engineers to determine specific design requirements for living shoreline techniques recommended by the Restoration Explorer. Click here (PDF document) (http://www.nj.gov/dep/cmp/docs/living-shorelines-engineering-guidelines-final.pdf) to find out more about engineering requirements.

2. **Identify potential funding sources.** State, Federal, or locally sourced funding depends upon the availability of grants and programs centered on coastal restoration and enhancement. Federal opportunities include: NOAA Regional Coastal Resilience Grants Program (http://coast.noaa.gov/resilience-grant/), and Department of the Interior Fish and Wildlife Service - The Coastal Program (http://www.fws.gov/coastal/CoastalGrants/), opportunities from the State of New Jersey include: Shore Protection Grants and Loans – State of N.J. Department of Environmental Protection (http://www.nj.gov/dep/grantandloanprograms/nhr_spgl.htm).

3. **Identify how to incorporate projects into existing municipal plans.** The Restoration Explorer is meant to work with existing municipal plans, and function as a guideline for preparing your own unique project(s). Living shoreline projects can be integrated into existing community plans by noting their ability to enhance natural habitats and strengthen shorelines. Integrating living shorelines into municipal plans offers a governmental means by which projects can be organized and implemented through carefully thought out policies relevant to a localized community.

Additional Resources
- **The Nature Conservancy (TNC) – New Jersey Chapter** (http://www.nature.org/ourinitiatives/regions/northamerica/unitedstates/newjersey/) TNC resources can help planners better understand coastal ecological benefits associated with living shoreline projects.
- **American Littoral Society (AmLS)** (http://www.littoralsociety.org/) AmLS provides resources for project planners about habitat restoration and overall environmental health.
- **Barnegat Bay Partnership (BBP)** (http://bbp.ocean.edu/pages/1.asp) BBP can help planners better understand the ways in which community outreach can help projects gain support.
- **Partnership for the Delaware Estuary (PDE)** (http://www.delawareestuary.org/) PDE provides resources for planners centered on project implementation and scientific research.
- **Stevens Institute of Technology (SIT): Guidelines to Living Shorelines (PDF document)** (http://www.nj.gov/dep/cmp/docs/living-shorelines-engineering-guidelines-final.pdf) SIT can help planners to better understand the engineering parameters of living shoreline implementation.
- **Rutgers University Center for Remote Sensing and Spatial Analysis (Rutgers)** (http://crssa.rutgers.edu/) Rutgers CRSSA can be a useful resource to learn about geospatial information sciences and how mapping can be an effective tool for planning a project.
- **NJ Department of Environmental Protection (NJDEP)** (http://www.nj.gov/dep/landuse/activity/livingshore.html) NJDEP can assist planners in better understanding State regulations concerning living shoreline management and permitting.
- **National Oceanic & Atmospheric Administration (NOAA)** (http://www.noaa.gov/) NOAA resources can help planners better understand habitat zones and living shorelines treatments.