The Impacts of Long-term Prescribed Fire on Tick Populations & Human Disease Risk

Elizabeth R. Gleim
Assistant Professor of Biology & Environmental Studies
Hollins University, Roanoke, VA
Ticks & Tick-borne Pathogens of the Southeastern United States

Amblyomma americanum
AKA lone star tick

Associated Diseases:
- Human monocytic ehrlichiosis (HME)
- Ehrlichiosis ewingii
- Southern tick associated rash illness (STARI)

A. maculatum
AKA Gulf Coast tick

Associated Diseases:
- *Rickettsia parkeri* rickettsiosis

Dermacentor variabilis
AKA American dog tick

Associated Diseases:
- Rocky Mountain spotted fever (RMSF)

Ixodes spp.
- *I. scapularis*
- *I. minor*
- *I. affinis*

Associated Diseases:
- Lyme disease
- Human granulocytic anaplasmosis (HGA)
Tick-borne Disease Incidence & Emergence are on the Rise

• Land Modification

• Increase in host abundance

• Climate change → Vector expansion

![Annual Cases of Lyme Disease in the US](image)
Ticks & Fire

• Tick populations reduced *immediately* after fire.

• Tick populations steadily recover over-time

• Dispute over *long-term* effects of fire on tick abundance
 • Increase or decrease in tick population &/or pathogen prevalence??

• Previous studies fail to account for variables affecting tick populations and/or do not simulate “real-world” management practices
Objectives

In southwest Georgia, determine:

1) Tick abundance & seasonality

2) Tick-borne pathogen prevalence

3) Determine the effects of long-term prescribed burning on the above
Study Design

• 21 Total Sites
 • 8 burned sites, surrounded by burned areas (BB)
 • 5 burned sites, surrounded by portions of unburned areas (BUB)
 • 5 unburned sites, surrounded by burned areas (UBB)
 • 3 control sites \(\rightarrow\) unburned, surrounded by unburned (UBUB)
Methods

• Tick surveys
 • Monthly flagging

• Microclimate & Weather

• Quarterly vegetation & host surveys
Prescribed Burns

- Burns performed as dictated by land managers
 - All dormant season burns
 - Ichauway: 2 year burns
 - WMA’s: 2-4 year burns
- All WMA’s burned during study period
Ticks Captured

• >47,000 ticks collected!!

Lone star tick by far most abundant

Black-legged tick second most common

Gulf coast tick surprisingly abundant; third most common

American dog tick fourth most common
Impact of Long-term Prescribed Burning on Tick Abundance

One clutch of larvae was counted as a single tick.
Impact of Burning on Tick Species Composition

Average Percent non-Larval Tick Species Composition *

- A. americanum
- A. maculatum
- I. scapularis
- D. variabilis

[Bar chart showing the impact of burning on tick species composition]
Take-Home Message

• Long-term prescribed fire reduces tick populations
 – Regardless of:
 • Burn Interval
 • Host Abundance
 • Vegetation Structure
 \rightarrow ~98% reduction in ticks!!

• WHY?
 • Change in vegetation structure \rightarrow hotter, drier environment

• Major reduction in disease risk for humans:
 – 0.02 infected ticks/hour in all burn treatments
 – 0.70 infected ticks/hr in UBUB
Future Research & Collaboration

Reintroduction of fire into a fire-suppressed ecosystem: What happens?
Acknowledgements

Funding provided by the Centers for Disease Control and Prevention, University of Georgia, J.W. Jones Ecological Research Center at Ichauway, & the Southeastern Cooperative Wildlife Disease Study (SCWDS)

Thanks to the following for field, laboratory & technical support:

• Collaborators: Michael Yabsley & Mike Conner, Michael Levin, Galina Zemstova and Roy Berghaus
• Staff and students at Ichauway, particularly technicians and hourly’s of Ichauway’s wildlife lab
• SCWDS
• Georgia Department of Natural Resources (DNR) – Wildlife Resources Division, region 5

And to the following for land use & field support:

• Mr. & Mrs. Murry Campbell, Dr. Gordon Miller, Mr. Perry Clement and Mr. Chuck Webster
Questions?

Contact info:
egleim@hollins.edu