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ABSTRACT
Grassland systems provide important habitat for native biodiver-
sity and forage for livestock, with livestock grazing playing an
important role influencing sustainable ecosystem function.
Traditional field techniques to monitor the effects of grazing on
vegetation are costly and limited to small spatial scales. Remote
sensing has the potential to provide quantitative and repeatable
monitoring data across large spatial and temporal scales for more
informed grazing management. To investigate the ability of vege-
tation metrics derived from remotely sensed imagery to detect the
effect of cattle grazing on bunchgrass grassland vegetation across
a growing season, we sampled 32 sites across four prescribed
stocking rates on a section of Pacific Northwest bunchgrass prairie
in northeastern Oregon. We collected vegetation data on vertical
structure, biomass, and cover at three different time periods: June,
August, and October 2012 to understand the potential to measure
vegetation at different phenological stages across a growing sea-
son. We acquired remotely sensed Landsat Enhanced Thematic
Mapper Plus (ETM+) data closest in date to three field sampling
bouts. We correlated the field vegetation metrics to Landsat spec-
tral bands, 14 commonly used vegetation indices, and the tas-
selled cap wetness, brightness, and greenness transformations. To
increase the explanatory value of the satellite-derived data, full,
stepwise, and best-subset multiple regression models were fit to
each of the vegetation metrics at the three different times of the
year. Predicted vegetation metrics were then mapped across the
study area. Field-based results indicated that as the stocking rate
increased, the mean vegetation amounts of vertical structure,
cover, and biomass decreased. The multiple regression models
using common vegetation indices had the ability to discern dif-
ferent levels of grazing across the study area, but different spectral
indices proved to be the best predictors of vegetation metrics for
differing phenological windows. Field measures of vegetation
cover yielded the highest correlations to remotely sensed data
across all sampling periods. Our results from this analysis can be
used to improve grassland monitoring by providing multiple mea-
sures of vegetation amounts across a growing season that better
align with land management decision making.
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1. Introduction

The world’s temperate grassland ecosystems are of high conservation importance, as
nearly half the historic area has been converted to different land-use types and less than
5% of what remains falls under conservation protection (Henwood 2010; Hoekstra et al.
2005). Grasslands provide important ecosystem services (Svoray, Perevolotsky, and
Atkinson 2013), including forage for the livestock industry and vital habitat for native
wildlife (Chapin et al. 1996; Conner et al. 2002). Due to the potential adverse effects that
grazing poses to structure and function of grasslands (Johnson et al. 2011; Milchunas
and Lauenroth 1993), their value for wildlife (Johnson, Kennedy, and Etterson 2012;
Kimoto et al. 2012), and the economic viability of ranching enterprises (Holechek et al.
1999), cost-effective monitoring techniques are needed that are able to identify trends,
thresholds, and tipping points for sustainable grazing management and grassland
ecosystem services (Smith et al. 2014). Accurate, cost-effective monitoring that is quan-
titative and repeatable across large spatial extents has proven to be difficult with
traditional, field-based rangeland monitoring techniques (Booth and Tueller 2003;
Pickup, Bastin, and Chewings 1994; Washington-Allen et al. 2006; West 2003).
Therefore timely monitoring of heterogeneous vegetation across large areas requires
new methods and technology (Hunt, et al. 2003; Pickup, Bastin, and Chewings 1994). The
relatively recent focus on acquiring scalable, quantitative data for decision support has
led to remote sensing as a way to improve existing monitoring data sets (Herrick et al.
2010). While some progress has been made in deriving empirical, repeatable measures
of important grassland vegetation metrics from remote sensing (Hagen et al. 2012;
Marsett et al. 2006; Todd, Hoffer, and Milchunas 1998), challenges remain to provide
accurate measures of multiple vegetation metrics over large grassland areas across
growing seasons. Development of scalable, season-specific metrics is critical for
improved understanding of drivers of rangeland condition, and to the decision-support
needs of rangeland managers tasked with implementing sustainable grazing manage-
ment programmes.

Space-borne remote-sensing data have the potential to provide repeatable vegeta-
tion monitoring data at management-relevant spatial scales (Hagen et al. 2012; Tsalyuk
et al. 2015). Previous investigations used a variety of analysis techniques to quantify
common rangeland monitoring metrics, such as vertical structure (Marsett et al. 2006),
cover (Blanco, Ferrando, and Biurrun 2009; Hagen et al. 2012; Purevdorj et al. 1998;
Röder et al. 2008; Marsett et al. 2006), and biomass (Brinkmann et al. 2011; Schino et al.
2003; Todd, Hoffer, and Milchunas 1998; Marsett et al. 2006). Field measures are typically
correlated to vegetation indices or transformations derived from remotely sensed data
(Dungan 1998) to determine the most applicable spectral index for vegetation monitor-
ing (Zhang and Guo 2008). Data for these relationships are derived from field data
collected at training sites and satellite-derived data from the geospatially co-located
pixel or pixel window corresponding to that site (Dungan 1998; Marsett et al. 2006;
Vescovo and Gianelle 2008; Yang and Guo 2011; Zhang and Guo 2008). Once relation-
ships are established between vegetation field metrics and remotely sensed data,
grazing effects have been quantified in a variety of ways (Kawamura et al. 2005;
Pickup, Bastin, and Chewings 1998; Yang and Guo 2011). Methods used include testing
the relationship between stocking rates and remotely sensed vegetation data (Numata
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et al. 2007) or comparing the average vegetation index values between pasture areas
with different grazing intensities (Yang and Guo 2011). Grazing management practices
have also been assessed by quantifying the trend in a specific vegetation index across
many years (Archer 2004; Bradley and O’sullivan 2011; Evans and Geerken 2004; Hill et al.
1998; Röder et al. 2008; Washington-Allen et al. 2006; Yang, Guo, and Fitzsimmons 2012),
or establishing a grazing gradient to quantify how vegetation cover changes with
distance from a water source for livestock (Lind et al. 2003; Pickup, Bastin, and
Chewings 1994, 1998).

Although these approaches provide some understanding of the change in vegetation
amounts caused by grazing, remotely sensed products for rangeland management
decision making are still lacking (Butterfield and Malmstrom 2006; Hagen et al. 2012;
Hunt, Jr. et al. 2003; Marsett et al. 2006; Washington-Allen et al. 2006). Specifically,
rangeland management decision making occurs across the span of a season to a full
year, but most prior studies have primarily quantified vegetation during a narrow
window of peak greenness (e.g. Brinkmann et al. 2011; Paudel and Andersen 2010). In
many grassland systems, pastures continue to be grazed after peak greenness, impact-
ing vegetation quantities and the metrics utilized by land managers to plan grazing for
the following year (Hagen et al. 2012; Marsett et al. 2006). Rangeland managers need
timely, in-season information regarding vegetation quantities and livestock impacts
during the grazing season for adaptive decision making (Anderson and Currier 1973;
Tueller 1989), as well as end-of-year measures (i.e. not peak greenness) to make
decisions regarding stocking rate, timing, and pasture rotations for the near future
(Holechek 1988; Tsalyuk et al. 2015).

Creating remote-sensing products that align with vegetation measures across the
yearly grazing management cycle or growing season can increase the utility of remotely
sensed data for management decision making. Providing such data, however, depends
on the ability of remote-sensing data to quantify vegetation amounts at different
phenological stages (i.e. actively growing or senescent vegetation). Typical greenness
indices, such as the normalized difference vegetation index (NDVI), have been correlated
to many vegetation measures such as cover, biomass, and leaf area index (LAI) during
vegetation photosynthesis, but lose accuracy as the vegetation senesces or turns brown
(Butterfield and Malmström 2009; Hagen et al. 2012; Marsett et al. 2006; Numata et al.
2007; Schino et al. 2003). Vegetation senescence across the growing season creates the
need to explore multiple vegetation indices to measure vegetation amounts at various
time periods across the year (Hagen et al. 2012; Marsett et al. 2006; Numata et al. 2007).
In an ideal decision-support framework, land managers could track common rangeland
vegetation monitoring metrics across the growing season (Hagen et al. 2012; Marsett
et al. 2006) and monitor changes in these metrics with different stocking rates to make
more informed decisions for both current and ensuing grazing periods.

The Pacific Northwest bunchgrass prairie is a unique grassland habitat that is sensitive
to grazing pressure (Johnson et al. 2011; McLean and Tisdale 1972; Skovlin et al. 1976).
Like many grassland systems that experience a summer dry season, grazing on this
grassland type predominantly occurs in the summer and fall months (Bartuszevige,
Kennedy, and Taylor 2012), mostly after peak greenness. Thus, to monitor grazing
impacts in this region requires a remote-sensing approach that spans the growing
season. Only a few studies have tried to quantify vegetation response to various grazing
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intensities (Munyati and Makgale 2009; Numata et al. 2007; Yang and Guo 2011), and
even fewer have tested the utility of multiple spectral indices to track grazing impacts
over the course of a single growing season (Hagen et al. 2012).

The primary objective of this study was to develop seasonal models of rangeland
condition from remotely sensed data. Specifically, we assessed relationships between
field measurements and spectral indices over a growing season to identify the best
spectral predictors of grazing effects on multiple common rangeland metrics, and
determined whether these predictors provide (1) reliable estimation of vegetation
amounts over time at different points in the grazing season, and (2) measures which
are sensitive to various stocking rates. We assessed the relationship of moderate-resolu-
tion Landsat data to three vegetation metrics (i.e. vegetation cover, biomass, and vertical
structure) measured during three different temporal periods across four stocking rates
on a semi-arid bunchgrass prairie in northeastern Oregon. To determine spectral sensi-
tivity, we (1) characterized relationships between field-based metrics and grazing inten-
sities, (2) quantified relationships between Landsat data and field-based metrics, and (3)
assessed the strength of the spectral relationships across the growing season. We
hypothesized that if significant relationships between spectral indices and vegetation
metrics remained consistent across the growing season and grazing levels, one could
evaluate how vegetation amounts differed across the landscape and between stocking
rates, thereby providing management data to help guide more informed and sustain-
able grazing rotations.

2. Methods

2.1. Study area

The study was conducted in 2012 on the Zumwalt Prairie Preserve, owned by The Nature
Conservancy (TNC) (45°33ʹ N, 117°02ʹ W, elevation 1500 m) in Wallowa County, Oregon,
USA (Figure 1). The Zumwalt Prairie Preserve (13,000 ha) constitutes a small portion of
the larger Zumwalt Prairie grassland, which is approximately 130,000 ha in area. These
grasslands are dominated by C3 grasses that include Idaho fescue (Festuca idahoensis
Elmer), bluebunch wheatgrass (Pseudoroegneria spicata (Pursh) A. Love), and Sandberg’s

Figure 1. Map of the study area, Zumwalt Prairie, Oregon.
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bluegrass (Poa secunda J Presl). Annual invasive grasses are relatively sparse across the
study area, comprising less than 5% of the total vegetation (Oregon State University,
unpublished data). Average summer (June–August) temperatures range from 11.8 to
17.5°C, with an average annual precipitation of 348 mm (2006–2012 Zumwalt Weather
Station), although most of this falls outside of the summer season. The growing season
on the prairie typically begins in April and ends in October. Although many grassland
systems worldwide are now used for crop production, the Zumwalt Prairie was not
converted to cultivation due to the short growing season and mostly shallow soils
(Bartuszevige, Kennedy, and Taylor 2012). Before the area was settled by Anglo-
Americans, the Nez Perce Tribe (Nimíipuu) grazed horses and cattle beginning in the
1700s (Bartuszevige, Kennedy, and Taylor 2012). The majority of land currently on the
Zumwalt Prairie is privately owned and livestock grazing has been the major land use for
over a century, with spring/summer pasturing of beef cattle the predominant use in the
last half century (Bartuszevige, Kennedy, and Taylor 2012).

2.2. Study design

To define the suitable habitat sampling area, we limited our study to the ecological
systems ‘Columbia Basin Palouse Prairie’ and ‘Columbia Basin Foothill and Canyon Dry
Grassland’ as defined by the ReGap Ecological Systems data (Kagan et al. 2006). To
reduce spectral noise from path radiance and shadowing of slopes, the analysis area was
limited to sites of less than 30% slope and at least 50 m away from roads, stock ponds,
and fence lines, and at least 200 m from other field sites.

Grazing treatment levels (stocking rates) were prescribed by TNC land managers to
align with prior grazing studies on the Zumwalt Prairie (Johnson et al. 2011). The
pastures were stocked with cattle at four different animal unit months (AUM) per hectare
(AUM ha−1). One AUM is the amount of forage consumed by an adult cow and her calf
across a 30-day period. High grazing treatments were stocked at 1.08 AUM ha−1,
medium at 0.72 AUM ha−1, and low at 0.36 AUM ha−1. Control areas were not grazed
by livestock (0.00 AUM ha−1). Pastures ranged in size from 40 ha (C3 and D3 pastures) to
185 ha (far north). It is assumed, based upon prior vegetation research across the study
area (Johnson et al. 2011), that site potential (i.e. vegetation amount) does not signifi-
cantly differ between treatment areas. Field data were collected in three different
sampling bouts: 26 June–4 July, 10–16 August, and 27 September–5 October, 2012,
with peak greenness occurring just before the start of the first sampling bout (Figure 2).
Thirty-two sites across three different stocking rates were sampled in each bout. We
were unable to sample within the pastures with low stocking rates due to limited
resources and time constraints (i.e. needing to collect field data within a limited window
around a Landsat acquisition date and before significant changes in phenology
occurred); we considered it was more critical to focus on sampling moderate and high
stocking rate pastures. A geographical information system (GIS) was used to generate
random sampling points, and when those points were reached in the field, the nearest
homogenous area to the pre-identified point was sampled. Sample sites were chosen to
best represent a gradient of vegetation amounts (Wylie et al. 2002). Twelve sampling
sites were placed in pastures with a high stocking rate, 10 sites in pastures with a
medium rate, and 10 in control (no-graze) pasture areas (Figure 2).
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2.3. Biophysical vegetation measures

Three vegetation metrics were sampled across the growing season to be modelled by
remotely sensed data: vegetation structure, foliar cover, and biomass. At each sampling
site a 30 m × 30 m macro-plot was established with two 30 m transects intersecting the
plot centre aligned in north/south and east/west cardinal directions. Within each macro-
plot, data on vegetation structure, foliar cover, and biomass were collected at three time
periods during the grazing season. Vegetation structure data were collected every 5 m
along each transect by measuring the lowest visible decimetre line on a Robel pole fixed
perpendicular to the ground. From opposite cardinal directions, measurements were
read off the pole from 4 m in distance and 1 m above ground height (Robel et al. 1970)
along the two transects for a total of 13 measures per macro-plot. Foliar cover data were
collected every metre on each transect using the line-point intercept method (Herrick
et al. 2005). Biomass was measured by clipping all vegetation standing crop within two
systematically random 0.5 m × 0.5 m quadrats located 15 m from each other per transect
to 0.5 cm above ground surface (Table 1). The first quadrat location for each bout and
transect had a random start location between 0 and 15 m generated (no start locations
were duplicated between bouts), the second plot being systematically placed 15 m away
along the same transect. To obtain dry weight, clipped vegetation was dried in an oven
at 60°C for 24–36 hours until the weight remained stable. The final weight of each
sample was averaged by macro-plot and used as the measure of dry biomass.

Figure 2. Grazing treatment map showing livestock stocking rates, timing of grazing, and the
number (N) and location of macro-plots sampled within each pasture. Suitable habitat analysis
area is delineated using two ecological systems ‘Columbia Basin Palouse Prairie’ and ‘Columbia Basin
Foothill and Canyon Dry Grassland’ from ReGap (Kagan et al. 2006); and areas with less than 30%
slope, at least 50 m away from roads, stock ponds, and fence lines.
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2.4. Utilization measure

Grazing impacts can be assessed by measuring utilization at the end of the year to
provide information on how much vegetation has been consumed or destroyed by
livestock (Coulloudon et al. 1999). Utilization was visually estimated at each macro-plot
during the last sampling bout in October, using the double-weight sampling method
described by Parsons et al. (2003) (Table 1). The average utilization per macro-plot was
computed by taking the average percent utilization estimated across 10 randomly
placed 0.25 m × 0.25 m quadrats. To account for estimation bias, observers first
estimated utilization amounts (0–100%) in fifteen 0.25 m × 0.25 m calibration quadrats,
each of which had varying amounts of vegetation removed to mimic different utilization
rates prior to sampling. After each observer-estimated utilization, the residual vegetation
was clipped to within 0.5 cm of the ground and weighed. The initial clipped vegetation
weight was then divided by the total weight (initial + final clipped weight) of the
vegetation within the quadrat to obtain utilization (Parsons et al. 2003). For each
observer, regression equations were constructed by regressing estimated utilization
against actual utilization (e.g. Parsons et al. 2003). Observer 1’s regression equation
was y = 0.711x + 12.07, with a coefficient of determination (R2) = 0.59 and p = 0.001;
observer 2’s regression was y = 0.735x + 7.291, with an R2 = 0.81 and p < 0.001. These
equations were then used to correct the observers’ estimated utilization for each sample
obtained at each macro-plot. Differences in utilization amounts between stocking rates
were then computed using ANOVA. When a significant overall effect was found, t-tests
between all possible treatment pairs were computed.

2.5. Remotely sensed data

The need to measure vegetation in a cost-effective manner and at different times
outside of peak greenness, coupled with the spatial scales of grazing management
decision making, determines the satellite platform to use for quantifying grazing
impacts on vegetation. The two freely available and most widely-used sensors to
measure grazing effects are Landsat and the Moderate Resolution Imaging
Spectroradiometer (MODIS) (Hagen et al. 2012). One challenge with MODIS lies in the
coarse spatial resolution (250–1000 m), which makes it difficult to accurately scale
spectral data to field data (Hagen et al. 2012). By comparison, Landsat (at 30 m resolu-
tion) is more easily related to plot-level field data and provides a greater number of
pixels for statistical analysis between distinct management areas. For these reasons,
Landsat has been shown to be a well-suited sensor for rangeland management purposes
(Ikeda, Okamoto, and Fukuhara 1999; Kurtz, Schellberg, and Braun 2010; Marsett et al.
2006; Röder et al. 2008; Xu and Guo 2015). Due to the spatial scales of management

Table 1. Field metrics collected for each sampling bout across the growing season at each of the 32
macro-plots.
Sample bouts Field metric Method Samples per site (N)

1,2,3 Foliar cover Line-point intercept – Herrick et al. 2005 60
1,2,3 Biomass Clip plots 4
1,2,3 Vegetation structure Robel et al. 1970 13
3 Utilization Parsons et al. 2003 10
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across the study area and the greater ability to accurately scale up from the field data,
we selected Landsat data to quantify grazing impacts for this analysis.

We acquired 11 terrain-corrected (L1T) Landsat Enhanced Thematic Mapper Plus
(ETM+) scenes from the middle of June to early October for 2012 from WRS-2 path/
rows 42/28 and 43/28 using the USGS EarthExplorer website (http://earthexplorer.
usgs.gov/). The Standard Terrain Corrected (L1T) product corrects for radiometric and
geometric inaccuracies of Landsat data. Each Landsat ETM+ scene was processed to
top-of-atmosphere reflectance using the ETM+ radiometric coefficients from Chander,
Markham, and Helder (2009) and then atmospherically corrected to at-surface reflec-
tance using the improved image-based cosine model (Chavez 1996). To relate the
satellite data to field data, Landsat scenes closest in date to the three field sampling
bouts were selected as base scenes. For pixels falling within ‘no data’ lines associated
with the Landsat 7 scan line corrector malfunction or obscured by cloud cover, data
were gap-filled with data from the next closest scene in date containing valid data
within the same growing season. For the first sampling bout, the 3 July 2012 scene
was used as the base scene, and pixels falling within areas of no data were gap-filled
with scene data from either 17 June or 12 July 2012, producing a 7.56-day average
(minimum = 1, maximum = 14 days) time difference between the plot sampling date
and the closest valid satellite data scene date. For the second sampling bout, the 13
August 2012 scene was gap-filled with the 4 August 2012 data producing a 2.4-day
average (minimum = 0, maximum = 10 days) between field and satellite data. For the
third sampling bout, the 30 September 2012 scene was gap-filled with the 7 October
2012 scene with a 4.96 day average (minimum = 3, maximum = 12 days) between
field and satellite data. Mean at-surface reflectance for each band was then computed
across four pixels using a 2 × 2 pixel window average to fully cover each macro-plot.
Band data and vegetation indices were then computed for each site using the
averaged values for each band. From these reflectance data, vegetation indices and
transformations were computed for each sample site for each sampling bout
(Figure 3).

2.6. Vegetation indices

At-surface reflectance data from Landsat ETM+ bands 1–5 and 7, as well as 14
vegetation indices and the tasselled cap transformations (Kauth and Thomas 1976),
were used to estimate relationships with biophysical vegetation data (Table 2).
Vegetation indices calculated were the simple ratio (SR; Jordan 1969), NDVI (Rouse
et al. 1973; Tucker 1979), soil adjusted vegetation index (SAVI; Huete 1988), renor-
malized difference vegetation index (RDVI; Haboudane et al. 2004; Roujean and
Breon 1995), modified triangular vegetation index 1 (MTVI1; Haboudane et al.
2004), canopy index (CI; Vescovo and Gianelle 2008), normalized canopy index
(NCI; Vescovo and Gianelle 2008), ratio cover index (RCI; Zhang and Guo 2008),
normalized difference cover index (NDCI; Zhang and Guo 2008), plant senesce
reflectance index (PSRI; Merzlyak et al. 1999), soil adjusted total vegetation index
(SATVI; Marsett et al. 2006), the seven/four ratio (7/4), normalized difference infrared
index seven (NDII7; Hardisky, Smart, and Klemas 1983; Key and Benson 2006),
normalized difference water index (NDWI; Hardisky, Smart, and Klemas 1983; Gao
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1996), and the tasselled cap transformations (Kauth and Thomas 1976) greenness
(TCGRE), brightness (TCBRI), and wetness (TCWET) from reflectance data (Crist 1985)
(Table 2).

These vegetation indices were selected based on prior research performed on
other grasslands (e.g. Marsett et al. 2006; Numata et al. 2007; Yang and Guo 2011;
Zhang and Guo 2008). Vegetation indices that incorporate red (band 3) and near-
infrared (NIR; band 4) bands have been shown to be effective in measuring green
vegetation amounts by differencing the reflectance values between the near-infrared
and red portion of the electromagnetic spectrum (Marsett et al. 2006; Rouse et al.
1973; Tucker 1979). Indices that incorporate the shortwave infrared bands [bands 5
(SWIR1) and 7 (SWIR2)], which are sensitive to water content, provide good measure-
ments of both green and senescent vegetation quantity (Hardisky, Smart, and
Klemas 1983; Marsett et al. 2006; Numata et al. 2007; Pickup, Bastin, and Chewings
1994; Yang and Guo 2011). Vegetation indices that incorporate SWIR band 7 in
combination with the NIR band are typically used for forest disturbances, such as
fire, and can be used to differentiate live vegetation from soil, ash, and dead
vegetation (Key 2006). The tasselled cap transformation is a linear combination of
six spectral bands of Landsat ETM+ data that results in three components: wetness,
greenness, and brightness. These three components have been useful in image
analysis of agricultural and forested systems (Crist and Kauth 1986; Kauth and
Thomas 1976).

Figure 3. Timing of the three sampling bouts (the numbered black boxes) in relation to Landsat ETM+
scenes used in the analysis process shown as dates in 2012. Scene data used to build relationships to field
sampling bout data are connected by lines, with base scenes outlined by boxes. The number on each line
represents the number of macro-plots corresponding to that scene date. The timing of livestock grazing
grouped by stocking rate is represented by black lines. The normalized difference vegetation index
(NDVI) is represented by the grey line; these data are from the 16-day NDVI MODIS product (ORNL DAAC
2012).
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2.7. Analysis

All biophysical vegetation and remotely sensed data was tested for normality using the
Lilliefors test (Lilliefors 1967). Non-normal data distributions were normalized and
Pearson’s correlations were computed between the utilization at each site and the
vegetation metrics of vertical structure, biomass, and foliar cover for each sampling
bout. Pearson’s correlations were also performed between all the remotely sensed data
and vertical structure, cover, and biomass for each sampling bout. Correlation coeffi-
cients (r) with p ≤ 0.05 were considered significant.

To increase the potential predictive power of satellite data to explain the variance in
vegetation metrics, multiple regression techniques were employed. Following Hudak
et al. (2006), full, stepwise, and best-subset models were created to determine the best

Table 2. Vegetation indices used for correlations and regressions with field metrics. The band (B)
refers to the Landsat 7 ETM+ band order (B1 = blue, B2 = green, B3 = red, B4 = NIR, B5 = SWIR1,
B7 = SWIR2).

Index and abbreviation Formula Reference

Red – NIR veg. indices Simple Ratio (SR) B4
B3

Jordan 1969

normalized difference
vegetation index (NDVI)

B4 � B3
B4 þ B3

Rouse et al. 1973; Tucker
1979

Soil Adjusted Vegetation
Index (SAVI)

B4 � B3
B4 þ B3 þ 0:5

1þ 0:5ð Þ Huete 1988

Renormalized Difference
Vegetation Index (RDVI)

B4 � B3p
B4 þ B3ð Þ

Roujean and Breon 1995;
Haboudane et al. 2004

Modified Triangular
Vegetation Index 1 (MTVI1)

1:2½1:2 ðB4 � B2Þ � 2:5ðB3 � B2Þ� Haboudane et al. 2004

Green/SWIR1 veg.
indices

Plant Senescence
Reflectance Index (PSRI)

B3 � B2
B4

Merzlyak et al. 1999

Canopy Index (CI) B5 � B2 Vescovo and Gianelle
2008

Normalized Canopy Index
(NCI)

B5 � B2
B5 þ B2

Vescovo and Gianelle
2008

Ratio Cover Index (RCI) B5
B3

Zhang and Guo 2008

Normalized Difference
Cover Index (NDCI)

B5 � B3
B5 þ B3

Zhang and Guo 2008

normalized difference
water index (NDWI)

B4 � B5
B4 þ B5

Hardisky, Smart, and
Klemas 1983; Gao 1996

SWIR 2 veg. indices Seven/Four ratio B7
B4

Normalized Difference
Infrared Index 7 (NDII7)

B4 � B7
B4 þ B7

Hardisky, Smart, and
Klemas 1983

Soil Adjusted Total
Vegetation Index (SATVI)

B5 � B3
B5 þ B3 þ 0:5

� 1þ 0:5ð ÞðB7=2Þ Marsett et al. 2006

Tasselled cap Brightness Index (BI) 0:2043 � B1 þ 0:4158 � B2 þ
0:5524 � B3 þ 0:5741 � B4 þ
0:3124 � B5 þ 0:2303 � B7

Crist 1985

Greeness Index (GVI) �0:1603 � B1 � 0:2819 � B2�
0:4934 � B3 þ 0:7940 � B4�
0:0002 � B5 � 0:1446 � B7

Crist 1985

Wetness Index (WI) 0:0315 � B1 þ 0:2021 � B2 þ
0:3102 � B3 þ 0:1594 � B5 �
0:6806 � B5 � 0:6109 � B7

Crist 1985
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predictor variables to model structure, cover, and biomass for each sampling bout. Using
both the stepwise and best-subset modelling techniques helped to ensure that multiple
models were explored for the best fit by searching different pathways for variable
selection (Hudak et al. 2006). We used a stepwise technique that selects the model
with the lowest Akaike information criterion (AIC) (Akaike 1974) by searching both
forward and backward pathways (Hudak et al. 2006). Next, a best-subset method was
performed to search all possible pathways, choosing the best variables for a defined
number of predictor variables (Hudak et al. 2006). Models with the lowest corrected AIC
(Sugiura 1978) having a variance inflation factor (VIF) less than 10 (Friendly and Kwan
2009) were selected as the ‘best’ models. We further tested all residuals for a normal
distribution with a mean of zero and for spatial autocorrelation using Moran’s I (Cliff and
Ord 1981). Models selected from each bout for each vegetation metric were then
applied to all other bouts to explore the ability for these best models to predict
vegetation amounts at different phenological stages.

Using the selected best regression models, we then computed and mapped the
estimated foliar cover, biomass, and vegetation structure metric for each Landsat grid
cell across all the pasture’s suitable habitat analysis area for each sample bout scene.
This produced three maps for each vegetation metric – one representing each of the
three sampling bouts. To compare the mean estimated vegetation amounts of cover,
biomass, and structure by stocking rate (control, low, medium, and high) across the
sampling bouts, we generated a 95% confidence interval around the mean using a
bootstrapping resampling procedure. This bootstrap procedure computes a mean from
randomly selected samples with replacement from the data set in question until it
equals the number of samples of the original data set, then this is repeated 1000
times producing 1000 means. The 95% confidence interval of the mean is constructed
by selecting the 2.5 and 97.5 percentiles. Where the confidence intervals around the
mean for each stocking rate do not overlap, significant differences exist at the 95%
confidence level. To quantify the effects of stocking rate on each of the predicted
vegetation metrics, ordinary least square (OLS) regression was performed using the
pasture stocking rate (AUM ha −1) as the predictor variable and mean vegetation amount
by pasture as a response variable. The slope of each OLS regression indicates the effect
of stocking rate on each vegetation amount.

3. Results

3.1. Data exploration of biophysical variables

Forage utilization ranged from 0 to 35%. Utilization rates in high and medium
treatment pastures were significantly higher than control pastures (p < 0.001).
There were no significant differences in utilization between high and medium stock-
ing rates (p = 0.38). Forage utilization was negatively correlated to all three vegeta-
tion metrics across all sampling bouts (Figure 4). Utilization was most strongly
correlated with cover during the second sampling bout (correlation coefficient
r = −0.69). Relationships between structure and utilization varied the least across
the three sampling periods, with r values ranging from −0.62 to −0.66. Biomass had
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the weakest correlations to utilization, with decreasing relationships observed later in
the growing season (Figure 4).

3.2. Relationships between satellite data and biophysical vegetation measures

The relationships between the biophysical data and satellite indices had Pearson’s
correlation coefficient (r) values ranging from −0.75 to +0.74 (Table 3). Band 7, the
seven/four ratio, and NDII7 were consistently significantly correlated across the growing
season to structure, canopy cover, and biomass. The strongest relationships were
between cover and the seven/four ratio and NDII7 vegetation indices, all having abso-
lute r values >0.63 (Table 3). The relationships between satellite data and biomass and
structure were also significant but were more weakly correlated than for cover. For
structure, Band 7 and the seven/four ratio had the highest correlations, with r values
ranging from −0.44 to −0.58 across the sampling bouts. Biomass was most correlated to
the seven/four ratio or NDII7, having similar results to vertical structure (r values ranging
from −0.52 to −0.66) in each sample bout across the growing season.

3.3. Multiple regression modelling

Fitting the full, stepwise, and best-subset models to the biophysical vegetation metrics
for each sample bout revealed multicollinearity with the predictor variables. The full
model and stepwise models for all three vegetation metrics had higher coefficient of
determination (R2) values and lower corrected AIC values than the best-subset models,

Figure 4. Pearson’s correlations between end-of-year % utilization and biophysical monitoring
metrics: (a–c) vertical structure (dm), (d–f) cover (%), and (g–i) dry biomass (g m−2).
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but the predictor variables were highly collinear. The best-subset models exhibited
decreased adjusted-R2 values when compared to the full and stepwise, but met the
assumption that the predictor variables were independent and therefore more appro-
priate models (Table 4). Each selected best-subset OLS model had normally distributed
residuals with a mean of zero and exhibited no significant spatial autocorrelation when
tested with Moran’s I (Cliff and Ord 1981).

The best-subset models for all three vegetation metrics had statistically significant
(p ≤ 0.01) relationships between satellite data and biophysical data estimates. While all
models were statistically significant, the coefficient of determination (R2) was wide-
ranging and below 0.75 for all subset models selected. The best-subset regression
models for structure and biomass had an explained variance that decreased with each
successive sampling bout as the growing season progressed and the grassland senesced.
The selected models’ adjusted-R2 values for vertical structure estimation decreased from
0.70 in the first sampling bout to 0.35 in the third, while the biomass estimation across
the sampling bouts decreased from 0.65 in in the first sampling bout to 0.32 in the third.
The selected best-subset models for cover performed better across the growing season,
having an adjusted-R2 greater than 0.60 for each sampling bout (Figure 5). Using the
best model for each sampling bout to predict the vegetation amount collected during
any other sampling bout indicated that no single model could achieve the best relation-
ship across the growing season (Figure 5). For example, the adjusted-R2 value decreased
when using the best-subset model selected for cover during the first sampling bout to
model cover for the third sampling bout, from 0.67 to 0.50.

3.4. Sensitivity to stocking rate

The best-subset model outputs showed that while within-pasture heterogeneity in pre-
dicted vegetation amounts existed across the study area (Figure 6), statistical differences by

Table 3. Pearson’s correlation coefficient values (r) between the remotely sensed data and the
vegetation field metrics structure, cover, and dry biomass across the three sampling periods. Values
in bold are significant at the 0.05 p-value; only spectral predictors with at least one significant
relation to any field metric are included in the table.

Remotely sensed
band or index

Pearson’s correlation coefficient value (r)

Structure Cover Biomass

1 July 12 August 1 October 1 July 12 August 1 October 1 July 12 August 1 October

Band 4 0.33 0.15 0.17 0.44 0.33 0.58 0.40 0.46 0.43
Band 7 −0.44 −0.53 −0.58 −0.60 −0.66 −0.48 −0.43 −0.48 −0.41
SR −0.23 0.23 0.27 −0.47 0.43 0.46 −0.27 0.51 0.45
NDVI 0.22 −0.31 0.26 0.46 −0.48 0.46 0.26 −0.54 0.44
SAVI 0.27 0.16 0.27 0.47 0.38 0.57 0.33 0.48 0.51
RDVI 0.26 0.16 0.27 0.47 0.38 0.57 0.31 0.48 0.51
MTVI1 0.24 0.14 0.21 0.43 0.36 0.51 0.30 0.47 0.46
NCI −0.42 0.20 0.08 −0.35 0.29 0.18 −0.34 0.41 0.20
PSRI −0.13 0.18 0.28 −0.37 −0.05 0.23 −0.14 −0.22 0.23
SATVI 0.04 0.31 0.18 0.27 0.42 0.33 0.13 0.58 0.23
Seven/Four ratio −0.49 −0.48 −0.54 −0.66 −0.68 −0.75 −0.52 −0.66 −0.57
NDII7 0.46 0.46 0.54 0.63 0.66 0.74 0.49 0.65 0.58
NDWI 0.35 0.18 0.39 0.53 0.45 0.55 0.39 0.44 0.50
TC – GVI 0.30 0.24 0.37 0.49 0.46 0.67 0.37 0.52 0.57
TC – WI 0.39 0.32 0.47 0.54 0.43 0.24 0.38 0.19 0.26
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stocking rate were evident (Figure 7). Limiting the comparison to the suitable habitat
analysis area, control pastures had significantly higher predicted structure, cover, and
biomass than all grazed areas; pastures with high stocking rates had the lowest predicted
vegetation amounts across all sampling bouts (Figure 7). The treatment areas stocked at low
and medium rates largely had mean predicted vegetation quantities falling between the
high and control treatment means across the growing season. In the first sampling bout, the
medium stocking rate treatment area had higher predicted vegetation amounts for struc-
ture and biomass than the low treatment area, but lower predicted vegetation amounts for
the second and third sampling bouts (Figure 7). This is likely attributed to the timing of
grazing in one of the medium pastures happening during and after the first sampling bout.

Estimates of vegetation quantity by pasture stocking rate indicated significant trends
in the reduction of vegetation across the gradient of stocking rates (Figure 8). This
reduction in vegetation is subsequently observed across all bouts. Depending on time of
year, for each extra AUM ha−1, biomass was reduced in the range 63 g m−2 (sampling
bout 1) to 38 g m−2 (sampling bout 3) (Figure 8). Vertical structure was also reduced by
between 0.17 and 0.31 decimetres with an increase of 1 AUM ha−1 in grazing stocking
rate depending on the time of measurement, with the greatest reduction observed in
the first sampling bout (Figure 8). Compared to structure and biomass, the reduction of
cover across the grazing gradient was more consistent across the growing season, with a
measure of between 11 and 13% with each additional AUM ha−1 (Figure 8).

4. Discussion

Analysis of vegetation amounts across the sampling periods of 2012 showed reduced
vegetation in areas with greater stocking rates. These findings provide evidence that our
remote sensing-based models were sensitive enough to discern different stocking rates
across the summer and fall months when cattle are grazing. However, the models most
strongly correlated to vegetation metrics changed over the course of the study period as

Figure 5. Adjusted R2 values from the selected best subset regression models for each sampling bout
and vegetation metric: (a) vertical structure, (b) foliar cover, and (c) biomass. The best model from each
sampling bout is then used to predict the vegetation metric at the two other sampling bouts.
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the grassland vegetation senesced, suggesting that there was no temporally consistent
single best model to monitor grazing effects using the remotely sensed indices tested in
this grassland system. Creating models that use vegetation indices and bands that most
appropriately match up with phenology (i.e. live or senescent vegetation) improved
model explanatory power to predict common rangeland monitoring metrics.

Relating our field measures of vertical structure, cover, and biomass with grazing inten-
sity as measured by end-of-year utilization validated that vegetation amounts changedwith
higher stocking rates. Finding significant correlations between our vegetation metrics and
the utilization metric helps clarify that our models can be used to quantify changes in
vegetation due to grazing, and not just loss due to changes in phenology and non-herbivory
related defoliation. From these data we observed significant negative correlations between
vegetationmetrics across the grazing season and utilization. Our result showing that vertical
structure is sensitive to utilization corroborates the finding of Johnson et al. (2011) that
vegetation structure was significantly reduced with increased stocking rates in treatment
years, as well as one year after grazing. Cover and biomass were also negatively correlated in

Figure 6. Maps of vegetation cover (%) by sampling bout across the grazing treatment pasture. No
data, or values outside of the regression equation range of estimation, are shown in red.
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Figure 7. Predicted vegetation amounts for (a) structure, (b) foliar cover, and (c) biomass across the
growing season by stocking rate. Mean vegetation amounts are shown as solid lines, with the filled
shaded area showing the 95% confidence interval around the mean. Predicted vegetation amounts
were derived from multiple regression analysis by stocking rate and sample bout.
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all but one comparison across the three sample bouts, providing evidence that grazing can
affect vegetation amounts across the growing season.

Both the Pearson’s correlations and multiple regression models between vegetation
data and remotely sensed data indicated that vegetation indices with bands 4 and 7
were the most useful to explain our biophysical vegetation measurements. When
performing Pearson’s correlation, the seven/four ratio and NDII7 best predicted vegeta-
tion monitoring metrics across the three different sampling periods. Vegetation indices
that included band 7 were most often selected using the subset regression approach
when finding the ‘best’ models. One explanation is that band 7 is sensitive to soil and
vegetation moisture; greater reflectance occurs when plants and soils are dry and more
bare ground is present (Knipling 1970; Tucker 1980). As SAVI also is sensitive to bare
ground, the stronger relationships of field metrics to indices incorporating SWIR suggest
that live plant moisture levels and the amount of non-photosynthetic vegetation were
more important than bare ground. Band 7 may be indicative of grazing levels and
resulting impacts on the amount of bare ground and vegetation moisture, with higher
grazing intensities creating drier, more barren areas. The lack of strong correlations with
greenness indices is similar to other studies that have tracked NDVI at different points in
a growing season (e.g. Butterfield and Malmström 2009; Schino et al. 2003; Vescovo and
Gianelle 2008). Within the bunchgrass ecosystem, NDVI had high r values (r > 0.7) for
green vegetation and green cover, but lacked strong correlations with the selected
biophysical variables throughout the year as vegetation senesced. The result that

Figure 8. Effect of stocking rate on (a) vertical structure, (b) foliar cover, and (c) biomass by sampling
bout. The point symbols represent the mean pasture biophysical estimate by sampling bout. The
ordinary least square (OLS) regression lines show the effect of the stocking rate (animal unit month
[AUM] ha−1) on the pasture means for each sampling bout. The solid black line and black symbol
refer to sampling bout one (SB1) data; the grey line and plus symbol refer to sample bout two (SB2)
data; the dotted line and box refer to sampling bout three data (SB3) data.
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vegetation indices containing bands 5 and 7 outperformed NDVI or SAVI across the
growing season, especially when grasses had senesced, is similar to the findings of
Numata et al. (2007) when assessing vegetation parameters during the dry season in
Brazil.

As the 2012 growing season progressed, the models created using the best-subset
approach decreased in explanatory power, but remained statistically significant. Cover
was the biophysical metric exhibiting the greatest explained variance across the grow-
ing season using both Pearson’s correlations and the best-subset regression models. This
indicates that a estimated of cover could be the most useful metric for setting manage-
ment objectives or performing multiyear trend analysis. Cover has been found to be a
reliable measure when estimated by satellite and is a commonly used metric to assess
rangeland condition in many grassland habitats (Booth and Tueller 2003; Hagen et al.
2012) and on the Zumwalt Prairie. Biomass and vertical structure vegetation metrics are
more difficult to estimate as the growing season progresses. Increasing the ability to
model vegetation later in the growing season could also be explored with other analytic
techniques. Numata et al. (2007) found that using fraction images of non-photosynthetic
vegetation produced from multiple endmember spectral mixture analysis (MESMA)
(Roberts, Smith, and Adams 1993) had the highest correlation to grazing intensity.

For analytic simplicity and creation of management tools, a single vegetation index
would provide all the needed information to monitor the selected biophysical metric
across the year (Marsett et al. 2006); however, the best-subset model selection showed
that accuracy is improved by producing models that match vegetation phenology. As
others have found, the ability to explain field vegetation metrics with remote-sensing
data decreases as vegetation senesces (Butterfield and Malmström 2009; Schino et al.
2003). This has been attributed to the reduction of amount of green vegetation versus
senesced vegetation impacting the spectral signal and subsequent green vegetation
indices (Butterfield and Malmström 2009; Hardisky, Smart, and Klemas 1983; Numata
et al. 2007; Schino et al. 2003; Todd, Hoffer, and Milchunas 1998; Vescovo and Gianelle
2008). In this study we found that macro-plot level field data for cover, biomass, and
structure became more similar over the course of the growing season, reducing the
variation of vegetation data being modelled. With increasing similarity and the amount
of variance to be explained decreasing, coupled with a small sample size (N = 32) for
each sampling bout, the statistical relationships between field and remote-sensing data
become less robust later in the year specifically for vegetation biomass and structure.

While our study highlights the potential to monitor grazing effects by satellite across the
grazing season in this bunchgrass ecosystem, it has limitations. First, our highest utilization
rate at any given macro-plot was just over 35%, a rate that is not considered very high for
the Zumwalt Prairie habitat (Holechek et al. 1999; Skovlin et al. 1976). Therefore, the models
created in this study to estimate vertical structure, biomass, and cover are best suited for
moderate levels of grazing and would likely be improved with more variance in grazing
levels. Future studies would benefit from sampling sites with higher variation in forage
utilization across the landscape. Second, field parameter estimation of biomass proved
difficult in such a highly heterogeneous landscape with limited samples (Friedl et al. 1994).
Estimation could be improved with more sub-samples within the 30 × 30 macro-plot or a
different technique of field estimation of biomass. Other studies have sampled larger areas
in the field; for example, Marsett et al. (2006) had field sites of 90 m × 150 m helping to
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ensure the field-sampled data were co-registered to only pixels within the field sample area.
Third, factors such as the scan line errors across all dates and cloud cover in the early part of
the study period created the need to acquire Landsat scenes from multiple dates to
correlate with field measures, potentially introducing noise into the analysis due to phe-
nological differences between selected remote-sensing scenes. However, a supplemental
analysis of correlations between scene dates within bouts and greenness over the season
showed minimal differences (all r values >0.89) in phenology within bouts, and consider-
able differences in site phenology between bouts (Figure 3), suggesting that our gap-fill
methodology did not overly impact our results.

Finally, inter-annual variation in phenology and production as a result of climate and
seasonality of precipitation means that these models may lose their effectiveness in
years where meteorological conditions are considerably different. This highlights the
need to collect field data over multiple years to improve model robustness for long-term
monitoring. For example, in 2012 the total annual precipitation was 96% of normal for
the year, but only 67 % of normal for the summer months (June–August). Additional
field data collection is the goal of a future study.

Future research should focus on automation of this analysis framework in understanding
how climate influences vegetation production phenology, such as timing of peak greenness
or senescence across the site. Because the ability of vegetation indices to accurately
estimate vegetation amounts is dependent on vegetation phenology (Butterfield and
Malmström 2009; Vescovo and Gianelle 2008), application of the models in future years
may be performed by selecting the model that most appropriately aligns with the current
phenology (Figure 9). This could be done using an NDVI curve derived from MODIS, with

Figure 9. The mean 2000–2012 MODIS normalized difference vegetation index (NDVI) curve derived
from the 16-day MODIS NDVI product, with the theoritical timeframe for most appropriate model
selection for future years represented by black bars. The pictures with associated dates show what
the vegetation looked like at each given time period.
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model selection being based on that part of the curve for which the models are best suited.
For example, the model developed for the first sampling bout is best suited around peak
greenness, while the model developed for the third sampling bout aligns with fully
senescent vegetation. Providing near-real-time maps of important biophysical measures
for management decision making will depend on automation of this process. This could be
achieved by utilizing Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)
at-surface reflectance products (Masek et al. 2006) with the associated automated data
analysis code that creates user-friendly maps or interactive analysis products for rangeland
managers. Future studiesmay also benefit by scaling the analysis up toMODIS resolution, to
determine whether this sensor also has the ability to monitor grazing intensity, which would
potentially increase the feasibility to create more frequent within-season measures of
important grassland monitoring metrics.

5. Conclusions

Rangeland managers need timely and accurate landscape-scale estimates of vegetation
amounts to determine the effects of their land management decisions. Prior remote-
sensing studies of grazing metrics have largely sought to estimate vegetation amounts
during peak greenness. Here we show that remotely sensed measures of vegetation are
sensitive to the varying amounts of grazing across the study period. We also demon-
strate that models built only on sampling during peak greenness are not applicable
across the entire grazing season as vegetation senesces, and that models should change
across the season to capture senescence. This research provides a better understanding
of the feasibility of producing multiple, within-season, near-real-time remotely sensed
data-driven grazing management decision-support tools.
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