Grounded.

By Brendan Borrell

Habitat boundaries and migration patterns are shifting. As climate change sends species scrambling, conservation finds its anchor in geology.

THE CHALLENGE
Global warming is rearranging our ecosystems.

THE RESPONSE
Scientist Mark Anderson (left) is looking at landscapes to find natural strongholds.

Many plants and animals are moving to escape the heat.

Scientist Mark Anderson (left) is looking at landscapes to find natural strongholds.
Mark Anderson is surrounded by maps. He has maps of wetlands and waterways, ridges and valleys, pastures and forests. He has geologic maps that look like watercolors, with pastel pinks and blues swirling from Maine to Alabama, and maps showing habitat disruptions in pointillist detail. They curl up next to the origami moose in his bookcase. They pile up on his desk, next to his latest scientific paper. They plaster the outside of his cubicle, partially obscuring his name and his title, director of conservation science for The Nature Conservancy’s Eastern United States division.

Of all these maps, there’s one in particular that Anderson and his team have agonized over. It shows all the Conservancy’s preserves, easements and land purchases in the eastern United States, more than 6 million acres in total, plotted in green and brown and protected for years to come. In fact, Anderson was one of the field ecologists who, in the early 1990s, came up with a strategy to identify the best places for the Conservancy to protect distinct examples of ecological communities. “Everything was based on the location of where species were at that time,” he says. “Then climate change comes along and — whoa! — everything is moving.”

Since 1880, average global temperatures have increased 1.5 degrees Fahrenheit, and scientists project that they will rise at least 2 more degrees by the end of the century. This warming trend has led to many ecological shifts. Some species are moving north—or up in elevation—in search of cooler habitat, while others, including invasives, fill the void. Flowers are blooming earlier in the spring and birds migrating south later in the fall. Extreme weather events such as epic droughts and storms are expected to become more common, threatening species that are already struggling to survive.

All this change raises a troubling question for the Conservancy: Even if it has set aside land with the highest levels of plant and animal biodiversity today, how can it guarantee that such a rich ecological community will remain there a century from now?

The answer may be found between the contour lines of Anderson’s maps. He champions an unconventional approach to conservation, one that focuses more on the stage than on its actors. “Species are really tied to physical properties of the landscape,” he says, explaining that landforms and elevation play a big role in determining biodiversity. Protecting the most diverse landscapes will help protect biodiversity by offering plants and animals the greatest number of options to cope with a changing climate. He calls these places resilient sites.

His research offers good news for the Conservancy: About half of its preserves rank high on his resiliency scale. And the research will also serve as a helpful signpost for future conservation priorities.

In many ways, Mark Anderson has spent his entire life thinking about resiliency. Now in his 50s, Anderson grew up south of Denver and watched firsthand as some of his old haunts gave way to suburbia. During college he became interested in conservation while working summers at an outdoor school in the Sangre de Cristo Mountains, and he went on to pursue his Ph.D. at the University of New Hampshire. It was there that he started pondering just how large a plot of forest needed to be to preserve all its species and high-end real estate. Uninterrupted landscapes with lots of ups and downs—like the wind-carved sandstone outcrops of the Conservancy’s Bear Rocks Preserve in West Virginia (top), or the granite slopes of New Hampshire’s White Mountains (will weather climate change better than flat, fragmented landscapes. As habitats heat up, species can move to higher or more sheltered areas.
Mark Anderson and his team of scientists analyzed the entire eastern United States to see which landscapes in coastal areas if sea levels rise. Note: Resilience could be lower than predicted 300,000 acres need further evaluation. Coastal shorelines and wetlands over the back of my neck,” Finton says. A swath of forest, 39 miles long and half a mile wide, had been leveled along a path that went straight through Brimfield. “It was exactly what Mark had talked about,” he says. Luckily, enough standing forest remains in the preserve and surrounding area that it is bouncing back. By 2008, Anderson was thinking about resiliency in bigger terms, wondering how to succeed at conservation under the looming threat of climate change. The leading approach by ecologists has been to try to predict where individual species will end up in 50 or 100 years. That might make sense for conserving certain charismatic and endangered species—such as wolverines or Atlantic puffins—but how do you protect an entire ecosystem? Anderson realized that if scientists’ projections about the climate were off just a little bit, and if their predictions about how species would respond to these changes were also off just a little bit, they might be protecting the wrong places. He decided to take a step back and look at the drivers of biodiversity in 14 eastern U.S. states and three Canadian provinces. When he plotted the number of plant and animal species against different environmental features, one factor stood above the rest: geology. His research found that if scientists’ projections about the climate were off just a little bit, and if their predictions about how species would respond to these changes were also off just a little bit, they might be protecting the wrong places.

If scientists’ predictions about how species would respond to changes were off just a little bit, they might be protecting the wrong places.

Anderson’s training had taught him the basic ecological tenet that specific species are tied to the landscape. The Tennessee cave salamander needs limestone caves. The serpentine aster grows only on certain serpentine soils. But the relationship Anderson uncovered between diversity and geology was so striking, it led to a kind of epiphany. “Climate might change the details of which species are in a particular region, but what’s really driving the overall number of species is the number of different environments they have,” he says. “If we want to conserve all the diversity in the Northeast in a continually changing climate, we have to make sure we have a conservation based strongly on geology.”

To demonstrate what he means by this, Anderson pulls up a satellite image of the New Jersey Pine Barrens on his laptop: a sandy coastal plain dense with pine forests and a winding network of dark, slow-moving rivers. It’s hard to believe that such a wilderness exists less than 100 miles from the skyscrapers of New York and Philadelphia. Both the New Jersey Pine Barrens and nearby Delaware have the same type of geology—coarse sediment deposited on the plain by ancient glaciers. But the two areas make a stark contrast. Delaware is flat and fragmented by roads. “It’s vulnerable to climate change,” Anderson notes. By contrast, in the New Jersey Pine Barrens, where the Conservancy holds several preserves, including the Forked River Mountain Preserve, “the landscape is rippled with uninterrupted hummocks and ridges that give species access to a wide variety of microclimates. In other words, it’s more resilient.” A hundred years from now, these two areas are going to diverge,” he says.

To help the Conservancy prepare for such changes, Anderson and his team have analyzed the entire eastern United States in terms of resiliency. His maps highlight the areas that have the greatest amount of topographic complexity, such as the shady slopes, moist flats and hilltops that provide options for, say, ferns in need of humid soil or salamanders hunting for cooler climes. Since these options are useful only if they are accessible, the analysis also looked at how well connected these habitats are to one another. Anderson has discovered that about 47 percent of the land the Conservancy has already protected in the eastern United States ranks above average in resiliency.
Q: With weather patterns changing, sea level rising, and species moving into new regions, what do you think conservation means today?
A: For most of the 20th century, we thought of conservation in terms of islands of protected areas: “Here’s an important spot. Protect it.” In this era of rapid change, those anchor places may be important, but we also need to be thinking about connectivity. We want places that are connected both by latitude and by elevation, so that species have an opportunity to move if changing habitat conditions necessitate that. We need to work across communities and incorporate entire landscapes and watersheds in our plans.

Q: Reducing carbon emissions depends on developing renewable energy. How can we do that without threatening species and ecosystems?
A: It gets back to the “whole systems” approach. Let’s look at a big great big place, identify places with high solar or wind energy potential, and ask where those overlaps with critical water supplies and places of high biodiversity and development. Those areas can be steered accordingly. These are things we’re doing both here in the United States and as far away as Mongolia.

Q: How does the Conservancy help influence public policy about climate change?
A: I think our environmental agencies have gone so far away from science in their discussion of climate change. There’s a group of scientists who can help understand climate considerations are now stitched into policy. We have a huge environmental agency, the Conservancy positions itself as a leader in helping public agencies and investment capacity, the Conservancy positions together our science, collaboration and strategic efforts to target protection and restoration efforts in forests that overlie limestone soil (see “Flying High.” April May 2014). Recently, his team acquired a 555-acre conservation easement that connects two larger blocks of land in the Monongahela National Forest. “The positive impacts of making investments in these places are going to be long lasting,” he says. This easement not only scores high in climate resiliency, but also increases habitat connectivity throughout the region.

Others outside the Conservancy have also been drawing on the mapping tools created by Anderson and his team. “It has given us an important way to think about resiliency in the Northeast,” says Andrew Millican, an ecologist who leads the North Atlantic Landscape Conservation Cooperative for the U.S. Fish and Wildlife Service. “For me, it’s always made a lot of sense.”

What Anderson finds most gratifying is the spread of his resiliency approach to other organizations and government agencies. The Doris Duke Charitable Foundation supported Anderson’s initial mapping in the Northeast and Middle Atlantic, which was published two years ago. He has since expanded the effort to include the Southeast. Last year, the foundation established a $6 million fund to protect climate-resilient sites in the Northeast and help 1,500 local and regional conservationists use Anderson’s tools. “Our initiative is about moving the science into mainstream conservation practice,” says David Ray of the Open Space Institute, which is charged with managing the fund.

Steve Buttrick, the Conservancy’s director of open space and conservation strategy, is aware of the issues but not yet pursuing them on a large scale. “The reality is that, for most of the organizations we work with, climate change is not high priority,” he says. “But the growing body of science is making it something they have to take seriously.”

Meanwhile, Steve Buttrick, the Conservancy’s director of open space and conservation strategy, is aware of the issues but not yet pursuing them on a large scale.

All my friends have new cell phones. They carry them round with them all day, like mini-computers, with little tiny keyboards and hundreds of programs which are supposed to make their life easier. Trouble is...my friends can’t use them. The keyboards are too small, the displays are hard to use and the phones are so complicated that my friends end up hanging up my Jitterbug when they need to make a call. I don’t want to be like them...I want my Jitterbug Plus. Now I have all the things I loved about my Jitterbug phone along with some new great features that make it even better!

GreatCall created the Jitterbug with one thing in mind—to offer people a cell phone that’s easy to see and hear, simple to use and affordable. Now, they’ve made the cell phone experience even better with the Jitterbug Plus. It features a lightweight, comfortable design with a huckle keyboard and big, legible numbers. Plus, you don’t have to dial ten numbers to know the phone is ready to use. You can also increase the volume with one touch and the speaker has been improved so you get great audio quality and can hear every word. The battery has been improved too—it’s one of the longest-lasting on the market. And you won’t be charged extra if your phone is missing. The phone comes to you with your account already set up and is easy to activate.

The rate plans are simple too. ‘Why pay for minutes you’ll never use?’ There are a variety of affordable plans. Plus, you don’t have to worry about finding yourself stuck with no minutes—that’s the problem with prepaid phones. Since there is no contract to sign, you are not locked in for years at a time and won’t

Finally, a cell phone that’s...a phone.

Introducing the all-new Jitterbug® Plus.
We’ve made it even better...without making it harder to use.

We proudly accept the following credit cards.

SCIENCERS’消费 INFORMATION: Jitterbug is owned by GreatCall, Inc. Your invoices will come from GreatCall. All rate plans and services require the purchase of a Jitterbug phone and a one-time set up fee of $35. Coverage and service is not available everywhere. Other charges and restrictions may apply. Screen images simulated. There are no additional fees to call Jitterbug or GreatCall’s U.S. Based Customer Service. However, tolls are charged on all international calls. A credit card and a $30 deposit will be charged before your service activates. A $10 credit will be deducted from your monthly balance until the length of the call is not charged. Your card will never be charged if you do not use your Jitterbug phone for 30 days. Other charges may be incurred if you make a call to a premium or pay-per-view service. These charges are not refundable. If you have used your Jitterbug phone too much in 30 days of service, you may be charged a $10 restocking fee. Jitterbug and GreatCall are registered trademarks of GreatCall, Inc. Jitterbug is a registered trademark of Samsung Electronics Co., Ltd. 855-812-9413 Samsung Telecommunications America, LLC. ©2015 GreatCall Inc. 855-HF2STREET for Business and Beyond.