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Chapter 13
State-and-Transition Models: Conceptual 
Versus Simulation Perspectives, Usefulness 
and Breadth of Use, and Land Management 
Applications

Louis Provencher, Leonardo Frid, Christina Czembor, 
and Jeffrey T. Morisette

Abstract State-and-Transition Simulation Modeling (STSM) is a quantitative 
analysis method that can consolidate a wide array of resource management issues 
under a “what-if” scenario exercise. STSM can be seen as an ensemble of models, 
such as climate models, ecological models, and economic models that incorporate 
human dimensions and management options. This chapter presents STSM as a tool 
to help synthesize information on social–ecological systems and to investigate some 
of the management issues associated with exotic annual Bromus species, which 
have been described elsewhere in this book. Definitions, terminology, and perspec-
tives on conceptual and computer-simulated stochastic state-and-transition models 
are given first, followed by a brief review of past STSM studies relevant to the man-
agement of Bromus species. A detailed case study illustrates the usefulness of 
STSM for land management. As a whole, this chapter is intended to demonstrate 
how STSM can help both managers and scientists: (a) determine efficient resource 
allocation for monitoring nonnative grasses; (b) evaluate sources of uncertainty in 
model simulation results involving expert opinion, and their consequences for 
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 management decisions; and (c) provide insight into the consequences of predicted 
local climate change effects on ecological systems invaded by exotic annual Bromus 
species.

Keywords  

13.1  Introduction

Land managers dealing with impacts of exotic brome invasions are challenged with 
understanding how local, site-level actions across heterogeneous landscapes and 
time periods will ultimately scale up to the region where outcomes are measured 
against desired conditions. State-and-Transition Simulation Modeling (STSM) pro-
vides a quantitative framework to combine these various facets at both regional and 
local scales. Spatial or nonspatial analyses are used to investigate “what-if” sce-
narios that incorporate management options and evaluate sensitivity of systems to 
specific parameterizations or assumptions.

This chapter is written for those who want to understand how STSMs can inte-
grate ecological and economic understanding into a simulation environment to pro-
vide insight into invasive species and vegetation management at landscape and 
regional scales. The focus is on using STSMs for management of vegetation, and 
particularly invasion by exotic annual Bromus (Bromus hereafter). We begin by 
offering background definitions, terminology, and perspectives. We then highlight 
the utility of STSMs through two published examples where STSMs have been used 
in other systems to determine efficient resource allocation for monitoring exotic 
grasses and to evaluate sources of uncertainty in STSMs involving expert opinion. 
We conclude with a new case study application of STSMs to provide insight into the 
consequences of predicted local climate change effects on ecological systems 
invaded by Bromus. For further reading, several publications offer excellent descrip-
tions or reviews of STSM concepts (Czembor and Vesk 2009; Rumpff et al. 2011; 
Knapp et al. 2011a, b; Daniel and Frid 2012).

13.2  Definition of State-and-Transition Models

Conceptual state-and-transition models are presented as discrete, box-and-arrow 
representations of the continuous variation in vegetation composition and structure 
of an ecological system (Westoby et al. 1989; NRCS 2003; Stringham et al. 2003; 
Bestelmeyer et al. 2004). The classification of an ecological system is important for 
framing each state-and-transition model. One example of a classification is the 
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USDA Natural Resources Conservation Service’s (NRCS) “ecological site descrip-
tion” (ESDs) system. Each ecological site represents “a distinctive kind of land with 
specific physical characteristics that differs from other kinds of land in its ability to 
produce a distinctive kind and amount of vegetation,” and can have a unique con-
ceptual state-and-transition model (STM) associated with it (NRCS 1998). STMs 
represent a method to organize and communicate complex information about the 
relationships among vegetation, soil, animals, hydrology, disturbances, and man-
agement actions on an ecological site (Caudle et al. 2013). They are comprised of 
states and transitions.

13.2.1  States

Within STMs, boxes represent the possible vegetation conditions of a parcel of land 
within an ecological system and include different (a) plant community states or (b) 
phases within a state (Fig. 13.1). A state is formally defined in the rangeland litera-
ture as a “recognizable, relatively resistant and resilient complex with attributes that 
include a characteristic climate, the soil resource including the soil biota, and the 
associated aboveground plant communities” (NRCS 2003; Caudle et al. 2013). The 
associated plant communities are phases of the same state that can be represented in 
a diagram with two or more boxes. Relatively reversible changes caused by distur-
bance or stress (e.g., fire, flooding, drought, insect outbreaks, herbivory, and others) 
and succession operate on phases within a state. Phases are most often recognizable 
steps of succession, which is a naturally continuous process. Phases can also occur 
among uncharacteristic vegetation classes as a result of succession. Different states 
are separated by at least one threshold. A transition across a threshold is often 
caused by an anthropogenic disturbance or species invasion. Thresholds are defined 
by conditions sufficient to modify ecosystem structure and function beyond the lim-
its of ecological resilience, resulting in the formation of alternative states (Briske 
et al. 2008). Crossing of thresholds usually indicates that substantial management 
effort is required to restore ecosystem structure and function to another state. The 
reference state represents the dynamic vegetation phases resulting from a natural 
disturbance regime, including disturbances caused by indigenous populations, 
where vegetation returns to the pre-disturbance conditions via succession. A thresh-
old often implies the creation of uncharacteristic vegetation classes, which often 
exist because of European post-settlement disturbance regimes, changes in climate, 
or species invasions. Moreover, thresholds can occur between different uncharacter-
istic states, usually signaling increasing degradation of the ecological system. A 
monoculture of Bromus tectorum L. (cheatgrass or downy brome) in a sagebrush 
shrubland is an example of an uncharacteristic vegetation class, which could be a 
phase or a state depending on model structure. Uncharacteristic vegetation classes 
can be formed of entirely native species (native uncharacteristic) or contain nonna-
tive plant species (exotic uncharacteristic), such as Bromus (Rollins 2009).

13 State-and-Transition Models: Conceptual Versus Simulation Perspectives…
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Fig. 13.1 (a) Conceptual state-and-transition model for NRCS ecological site R028AY307UT  
A. tridentata spp. wyomingensis growing on upland gravelly loam soils in Utah (Thacker et al. 2008). 
The larger bold boxes represent vegetation states with the top (#1) being the reference state and 
immediately below it (#2) the current potential state, which is similar to the reference with a non-
dominant presence of nonnative plants. States #3–5 represent undesirable states that are invaded 
with J. osteosperma, Gutierrezia sarothrae (Pursh) Britton & Rusby (broom snakeweed), and inva-
sive annual grasses or forbs, respectively. The final (#6) state represents a nonnative but more 
desirable vegetation community such as Agropyron cristatum (L.) Gaertn. (crested wheatgrass).

L. Provencher et al.
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13.2.2  Transitions

The other fundamental component of a conceptual STM are transitions representing 
either succession between phases or disturbances that alter the structure or composi-
tion of phases and, eventually, states. Transitions can be natural (e.g., fire, flooding) 
or managed (e.g., prescribed burning). Furthermore, natural disturbances can repre-
sent pre-settlement (e.g., surface fire) and European post-settlement (e.g., Bromus 
invasion) events. Most transitions are reversible given succession, natural distur-
bances, or management actions; however, some transitions can result in crossing of 
biotic or abiotic thresholds that irreversibly change either the diagnostic species 

Fig. 13.1 (continued) Boxes within each state represent vegetation phases. Arrows represent either 
transitions between phases or states (i.e., 1.2a is a replacement event from late successional shrubs 
to grass forbs, while T2c represents invasion by annual grasses or invasive forbs). This conceptual 
state-and-transition diagram is accompanied by a detailed description of each state, phase, and 
transition in the NRCS source documentation. (b) Screen capture of STSM software showing a 
model developed for the same ecological site. The box-and-arrow “pathway diagram” shows 
phases for the current potential state (#2), and the three undesirable states (#3–5). Arrows in the 
diagram represent probabilistic or deterministic transitions driven by different process such as fire, 
grazing, or succession. The graphs on the right show model outputs for three different example 
management scenarios representing the amount of land in modeled states or phases. Blue repre-
sents ongoing management, green is no management, and red is delayed management. Lines rep-
resent the mean across multiple iterations and shaded areas represent model uncertainty
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composition of an ecological system (e.g., loss of aspen clones caused by prolonged 
fire exclusion or excessive herbivory) or the potential of a soil to support the eco-
logical system due, primarily, to soil loss. Bromus invasion and community domi-
nance is an example of a transition that may or may not be reversible (Bagchi et al. 
2013; Knapp 1996) and hence both conceptual STM and corresponding STSMs are 
well suited to exploring related management questions.

Conceptual STMs are familiar to many students of natural resources because 
graphical, quantitative, and written models can all be represented by boxes and 
arrows or a written description. Graphical representation of states and transitions for 
different ecological systems is common not only in rangelands, but also in other 
systems such as reclaimed mine sites (Grant 2006). These conceptual models pro-
vide a flexible approach for describing and documenting the vegetation dynamics 
associated with a particular ecosystem (Daniel and Frid 2012).

13.2.3  A National Context in the United States

The US NRCS has been nationally revising their ecological site descriptions to 
include conceptual STMs (NRCS 2003). This revision is ongoing and many regions 
of the United States still do not have published ESDs or STMs. These models can 
be graphical (box-and-arrow models with larger boxes for states and smaller nested 
boxes for phases), written descriptions of reference and uncharacteristic states, plus 
disturbances causing transitions between thresholds or a combination of both. The 
initial state depicted in NRCS models is the historic plant community (i.e., refer-
ence state [Rumpff et al. 2011]) from which all other states are derived through 
natural and managed transitions. The reference state is based on the natural range of 
conditions associated with natural disturbance regimes and often includes several 
plant communities (phases) that differ in dominant plant species relative to type and 
time since disturbance (Caudle et al. 2013).

NRCS ecological site descriptions are frequently used by US Department of 
Interior and Department of Agriculture staff for restoration project prescriptions 
(e.g., native seed mix) and US National Environmental Protection Act documenta-
tion. Conceptual STMs generate non-quantitative, general predictions about desir-
able and undesirable processes causing transitions between states at a site-specific 
level. A recent criticism of purely conceptual STMs developed for ecological sites 
is that they lack the ability to project state transitions that will be important in the 
future and to link these to levels of conservation funding for management and res-
toration actions (Twidwell et al. 2013). Consequently, there are currently efforts 
under way to digitize conceptual STMs from ESDs and convert them into STSMs 
that can be used to generate testable hypotheses. For example, quantitative models 
developed by Evers et al. (2013) explicitly consider how warmer, drier sites func-
tion differently from cooler, moister sites.

L. Provencher et al.
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13.2.4  State-and-Transition Simulation Models

STSMs begin with conceptual models, such as the ones described above. Before the 
models are applied, the landscape being simulated is subdivided into simulation 
cells, which can be nonspatial or spatially represented using a map. These models 
can be quantified with the following additional information: (1) an inventory, either 
spatial or nonspatial, of the vegetation conditions of the landscape at the start of the 
simulation, which describes the ecological system, and state class (state and phase) 
of each simulation cell in the landscape and (2) a rate associated with each possible 
transition between state classes. Then, these transition rates can be further quanti-
fied using three general approaches: (2.1) probabilistic, with a specified probability 
at any point in time; (2.2) deterministic, occurring after a specified period of time in 
a state class has elapsed; or (2.3) with target areas assigned to occur on the land-
scape over time. The first two approaches are typically used to emulate natural 
processes such as disturbances and succession, whereas the last is typically applied 
for management actions such as herbicide application. Computer software then uses 
the inventory of starting vegetation conditions and rates associated with each transi-
tion to project future vegetation conditions of the landscape (Fig. 13.1b), as well as 
occurrence of transitions over time. The overall approach to applying STSM is 
described in detail in Daniel and Frid (2012).

In recent years there has been a proliferation of quantitative STSM applications 
to a diverse set of natural resource management problems (see Daniel and Frid 2012 
for examples). This development has been driven in part by the model development 
training and awareness created by the Landscape Fire and Resource Management 
Planning Tools Project (LANDFIRE) in the United States (Rollins 2009; Blankenship 
et al. 2012) and the need for new management decision support tools. The popular-
ity of this approach has been facilitated by the availability of flexible software tools, 
beginning with the Vegetation Dynamics Development Tool (VDDT) in the early 
1990s for the Interior Columbia Basin Ecosystem Management Project (Barrett 
2001; Hann and Bunnell 2001). The most recent of these tools, ST-Sim (www.syn-
crosim.com), has both nonspatial and spatially explicit capabilities. Note that while 
there are other modeling approaches and software packages for simulating land-
scape change, some of these are specifically tailored to forests (i.e., Landis II, 
Scheller et al. 2007) and many others are not documented or supported to the level 
available with ST-Sim (Keane et al. 2004). Prior to the availability of software, 
quantitative STMs have been either analytical (Horn 1975) or simulated with 
project- specific computer programs (Hardesty et al. 2000). Analytical STMs are 
rare because even the simplest models incorporate nonlinear step functions (i.e., age 
and time since past transitions) that render analysis difficult to intractable.

Many of the initial STSMs were created by US Forest Service ecologists and 
contractors (Merzenich et al. 1999; Barrett 2001; Hann and Bunnell 2001; Hemstrom 
et al. 2004) and ecologists of The Nature Conservancy (TNC; Hardesty et al. 2000; 
Forbis et al. 2006; Provencher et al. 2007) who were just starting to incorporate the 
conceptual developments and terminology proposed by rangeland ecologists 
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(Westoby et al. 1989) and NRCS (2003). Despite these nearly independent paths, 
both groups approached state-and-transition modeling concepts in a remarkably 
similar manner with differences mostly in jargon (Table 13.1). Fortunately, specific 
jargon and definitions matter little for actual STSMs because simulation software is 
flexible and can accommodate different terminology.

13.2.5  Nonspatial and Spatial Model Approaches

Many STSMs are nonspatial with the fate of each simulation cell being independent 
of the fate of any other cell, because they are simpler and faster to create and run, 
and require less data and fewer assumptions than spatially explicit models. Spatially 
explicit STSMs require at a minimum a polygon- or raster-based vegetation layer(s), 
size frequency distributions for each transition process (the frequency of very small 
to very large events, such as fire), and spatial constraint layers defining management 
zones (e.g., ownership polygons) or priority areas (e.g., no fire tolerated to large fire 
size allowed; Kurz et al. 2000; Provencher et al. 2007). These data can be difficult 
and expensive to obtain. Given the additional data and computational requirements 

Table 13.1 Comparison of state-and-transition modeling terminology differentially used by 
rangeland ecologists, quantitative modelers, and simulation software

Rangeland 
ecologists Quantitative modelers Software

Ecological site Ecological site(s) (TNC)
Ecological system (NatureServea and 
TNC)
Potential natural vegetation type (US 
Forest Service)
Biophysical setting (LANDFIRE and 
TNC)

Cover type (VDDT)
Stratum (PATHb, ST-Sim)

State ≥1 vegetation class Cover type × Structural stage 
(VDDT & Path)
State Class (ST-Sim)

Phase Vegetation class (reference or 
uncharacteristic)
Existing vegetation class (US Forest 
Service)

Cover type × Structural stage 
(VDDT & Path)
State Class (ST-Sim)

Reversible 
transition

Transition (specified as natural, 
uncharacteristic, or managed)

Transition (specified as 
probabilistic or deterministic)

Irreversible 
transition

Transition (uncharacteristic or 
managed)

Transition (probabilistic or 
deterministic)

Threshold Transition (uncharacteristic or 
managed)

Transition (probabilistic or 
deterministic)

ahttp://www.natureserve.org/library/usEcologicalsystems.pdf
bPath is the landscape simulation freeware platform that replaced VDDT: www.pathmodel.com. 
Currently, the ST-Sim simulator in the SyncroSim state-and-transition platform (www.syncrosim.
com) is the latest nonspatial and spatial generation of software development started with VDDT
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of spatially explicit modeling, a compelling question or objective justifying the 
need to do spatially explicit modeling should be a prerequisite to developing a spa-
tial STSM. That said, good cases for spatially explicit STSMs can usually be made 
for wildlife management, nonnative plant species control and monitoring (Frid and 
Wilmshurst 2009; Frid et al. 2013a, b), and wildland fire (Miller 2007). In these 
cases, the position and size of natural and managed transitions can critically affect 
project-specific metrics that track the condition of ecological systems studied. 
Extreme weather events and climate projection do vary across the landscape. Thus, 
studies looking to consider these issues ought to include a spatial component. There 
are a number of nonspatial (Evers et al. 2011, 2013; Provencher et al. 2013; Low 
et al. 2010; Forbis et al. 2006; Creutzburg et al. 2012) and spatially explicit 
(Provencher et al. 2007) STSM applications with a Bromus component.

13.2.6  Uses and Benefits of State-and-Transition  
Simulation Modeling

While conceptual STMs are useful tools for describing vegetation dynamics and 
identifying possible management prescriptions at the site-specific scale, they can fall 
short of providing prognostic information for landscape scale vegetation manage-
ment efforts. Land managers are frequently faced with limited resources and compet-
ing objectives and an interest in knowing how their actions will play out on the 
landscape. For example, should restoration resources be applied toward areas affected 
by woody species encroachment or toward areas affected by annual species inva-
sions? In addition to competing objectives such as these, land managers are often 
faced with uncertainties and incomplete information of the vegetation dynamics for 
the landscape of concern. Despite these challenges, land managers must frequently 
make decisions about the allocation of limited vegetation management resources. At 
landscape scales, STSMs are valuable tools for identifying robust management strat-
egies, important trade-offs, and critical uncertainties for decision making.

STMs are popular among range and forest managers because they are easy to 
communicate and typically require less data to parameterize than more complex 
process-based models under different applications. However, STSMs can include 
information from process-based models and analysis (Halofsky et al. 2013). These 
models are management oriented and simulations can be useful to solve complex 
management questions. STSMs have the major benefits of being flexible and foster-
ing stakeholder engagement and buy-in (Price et al. 2012; Nixon et al. 2014). 
Simulations have the ability to predict changes in vegetation under different scenar-
ios considering alternative management actions and hypotheses about the response 
of natural systems to them. The variety of scenarios that can be explored—from cli-
mate change to single management actions (e.g., prescribed burning)—is very large 
and feasible. The social benefit of model building is that it allows land managers and 
scientists to explicitly document their understanding and assumptions about ecologi-
cal processes, management actions, and the interactions between the two. Such a 

13 State-and-Transition Models: Conceptual Versus Simulation Perspectives…



380

framework can help build support for proposed actions or provide useful direction 
for future experiments (Low et al. 2010; Price et al. 2012; Nixon et al. 2014).

13.2.7  Examples of STSM Applications  
from Non-Bromus Systems

Here we present two examples of STSM applications to non-Bromus systems that 
could similarly be applied to Bromus. Many challenges in conservation science can 
be (1) traced to altered disturbance regimes, (2) caused by legacies of vegetation 
classes or phases that differ from reference conditions, and (3) effectively resolved 
with alternative management scenarios. Because the issues of exotic annual Bromus 
control involve a wide array of ecological processes as well as economics (Chambers 
2008; Knapp 1996) and land management options (Monsen et al. 2004), it is useful 
to have a framework to integrate our current understanding, assumptions, and poten-
tial scenarios in a tractable and repeatable form. In the different applications of 
STSM presented in these examples, we hope to illustrate how STSM can integrate 
a wide breadth of ecological processes and management options. Specifically, these 
examples were chosen to illustrate two different management-oriented uses of 
STSM: (1) identification of the most cost-effective approach to control nonnative 
grasses using spatial STSMs designed to consider trade-offs between monitoring 
and treatment; and (2) quantification of model uncertainty when expert knowledge 
is used to parameterize an STSM.

13.2.7.1  State-and-Transition Simulation Models as a Tool for Guiding 
Invasive Plant Monitoring and Treatments

Despite the high economic impacts of exotic plant invasions (Pimentel et al. 2005), 
including those of Bromus (Knapp 1996), control and restoration resources avail-
able for Bromus management on any one landscape are often limited and intermit-
tently available. These limited resources must be allocated to multiple activities 
including treatment of detected infestations, monitoring treatment success, and 
monitoring to discover previously undetected infestations. Cost-efficiency of con-
trol measures is greatly increased by discovering and treating new infestations 
(“nascent foci”), before propagule banks are established at or beyond the invasion 
site (Moody and Mack 1988; Maxwell et al. 2009; Frid et al. 2013a). However, (1) 
land management programs are often evaluated based on numbers of acres treated, 
which creates an incentive to focus all resources toward already detected infesta-
tions; (2) allocating resources toward monitoring and failing to detect any new 
infestations is often viewed as a waste of resources; and (3) most land managers 
lack tools to detect nascent foci or determine how much of their budget should be 
allocated to monitoring versus treatment.

L. Provencher et al.
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STSMs can help land managers determine appropriate strategies for resource 
allocation, including selection of management activities and locations. For this 
example, we draw upon a recent study of a non-Bromus invasive grass, Pennisetum 
ciliare (L.) Link (buffelgrass; synonymous with Cenchrus ciliaris), by Frid et al. 
(2013b) in the Sonoran Basin and Range, which demonstrates an application that 
could be applied in future work to Bromus. In this model, the phases distinguish 
between P. ciliare abundances (<5 %, 5–50 % and >50 % cover) and whether they 
are detected or not (Fig. 13.2).

This model was a spatially explicit STSM, developed using TELSA (Kurz et al. 
2000), which included input and output maps of the P. ciliare over time, and distin-
guished between detected (and treatable) and undetected patches that would require 
resources to be detected. The model simulated dispersal of short- (i.e., neighbor-to- 
neighbor) and long-distance dispersal of P. ciliare to other locations on the land-
scape based on time series of spread determined from aerial photography (Olsson 
et al. 2012). A map of the current known distribution of P. ciliare was derived from 
the same aerial photographs. A habitat suitability model based on slope, aspect, and 
elevation was used to estimate where P. ciliare could grow, and at what densities. 

Fig. 13.2 State-and-transition model used by Frid et al. (2013b) to simulate alternative manage-
ment strategies for P. ciliare in southern Arizona. The STSM categorizes each spatially explicit 
polygon dynamically over time based on both the presence and abundance of P. ciliare and on its 
detection status. The STSM has a total of eight possible states represented by five possible cover 
classes (absent, seedbank only, cover <5 %, cover 5–50 %, cover >50 %) and by whether the pres-
ence of live plants has been detected by managers
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Treatment and monitoring effectiveness rates were derived from a survey of P. ciliare 
management practitioners.

Five alternative management options that varied in both the budget allocated 
toward monitoring and treatment and their effectiveness were evaluated in a binary 
fashion (high/low; Table 13.2). Budgets for treatments and monitoring were either 
unlimited, as a benchmark of what could be accomplished, or limited to half of what 
the unlimited scenario utilized. The model predicts that in the absence of manage-
ment, the area infested with P. ciliare would grow exponentially until the ecological 
limit is reached within a 50-year period (Fig. 13.3).

Some of the key conclusions from these simulations were:

 1. In the long term (2010–2060), unlimited budget scenarios used similar amounts 
of resources to those with a limited budget, yet resulted in less than an order of 
magnitude the amount of area infested per area treated because management was 
able to act when desirable plant community transitions required a lower energy 
input. In the short term (2010–2030), unlimited budgets used more resources 
than scenarios with a limited budget.

 2. Monitoring for new infestations is a key component of the management strategy. 
When the monitoring budget or effectiveness was reduced, initial treatment costs 
were reduced because fewer detected patches of P. ciliare were treated. However, 
long-term treatment costs were much higher because plant community states that 
are difficult to transition from had been reached, requiring substantially greater 
investment. Reducing either the resources allocated to or the effectiveness of 
monitoring efforts results in larger, more distributed patches of P. ciliare on the 
landscape.

Table 13.2 Simulated area invaded and cumulative area undergoing inventory treatment and 
maintenance for five scenarios showing area (ha) invaded by P. ciliare and cumulative area 
undergoing inventory, treatment, and maintenance at years 2030 and 2060

Scenario Year
Hectares 
invaded

Cumulative area (ha)

Inventory Treatment Maintenance

Initial conditions 2010 82 0 0 0
No management 2030 1795 0 0 0

2060 6263 0 0 0
Intermediate management: 
worst case

2030 997 82,281 682 9494
2060 4952 236,142 3157 29,059

Intermediate management: 
best case

2030 603 104,520 971 18,244
2060 3081 258,212 3364 46,843

Unlimited management: 
worst case

2030 864 81,897 837 10,060
2060 637 358,643 11,543 99,986

Unlimited management: best 
case

2030 159 146,054 1460 27,851
2060 54 392,803 3752 75,380

“Worst case” represents the low range and “best case” the high range of management efficiency as 
described in results of a survey conducted with P. ciliare managers. The total size of the landscape 
simulated was 46,000 ha
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To our knowledge, the approach used by Frid et al. (2013b) using an STSM to 
simulate resource allocation to detection as well as treatment has not yet been 
applied to Bromus. Future work on Bromus species using this modeling approach 
could consider questions around resource allocation in space. For example, the 
model could consider trade-offs between monitoring and prioritizing treatment of 
more remote (and thus costly) areas versus accessible areas that require fewer 
resources to treat. In addition, the trade-off between monitoring and treatment could 
be explored further on a landscape and species-specific basis to determine which 

Fig. 13.3 Maps of the Santa Catalina Mountain Study area showing (a) mapped P. ciliare in 2010 
and simulated P. ciliare invasion at year 2060 for five simulation scenarios: (b) no management, 
(c) intermediate management best case, (d) intermediate management worst case, (e) unlimited 
management best case, and (f) unlimited management worst case (From Frid et al. 2013b)
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management strategy might be most effective. While other non-STSM modeling 
approaches could also consider similar questions, this existing work provides an 
example STSM that in combination with conceptual state-and-transition models 
and STSMs for Bromus could be adapted to consider similar trade-offs for this spe-
cies. In particular, the innovative use of states to distinguish between the informa-
tion available to managers about an invasive species’ presence or absence is ideally 
suited to STSMs. Since this study was conducted, there have been significant tech-
nological and design improvements to STSM software and conducting a similar 
expanded study for Bromus should be more feasible using the latest available tools 
(ST-Sim, see www.syncrosim.com).

13.2.7.2  Modeling with Uncertainty and Consequence for Conservation

STSMs can describe the current understanding of ecosystem dynamics and predict 
effects of invasive species and vegetation management, as seen in the example pro-
vided in Sect. 13.2.7.1 (see also Rumpff et al. 2011; Frid et al. 2013a). However, 
since models are simplified characterizations of complex natural systems, their pre-
dictions will deviate from reality; this deviation is hereafter called model uncer-
tainty. It is important to estimate how well, or poorly, a model describes ecosystem 
dynamics because this knowledge provides managers with a level of confidence in 
predicted management outcomes. Ignoring model uncertainty can lead to ineffec-
tive or wasted management (e.g., Johnson and Gillingham 2004) and, given the high 
cost and limited resources often associated with invasive species and vegetation 
management, model uncertainty can have large consequences for management.

Model uncertainty in STSM can arise from many sources, such as estimated 
effects or rates of transitions, or the use of expert opinion (see Regan et al. 2002). 
Expert opinion is used when empirical data of reference conditions, states, or transi-
tions are unavailable; or when transition rates are expected to deviate from historical 
values due to climate change (e.g., Sect. 13.3). A lack of data on transition rates in 
rangeland systems has necessitated a high reliance on expert opinion (e.g., Forbis 
et al. 2006; Vavra et al. 2007; Evers et al. 2011, 2013). While there are examples of 
STSM for Bromus management that investigate certain sources of uncertainty (e.g., 
Evers et al. 2013; Creutzburg et al. 2014), there are no examples of characterization 
of uncertainty due to expert opinion in an STSM for Bromus or other invasive annual 
grass. Below, we demonstrate how to characterize this uncertainty in STSM, draw-
ing from a published example from Eucalyptus forests in Australia (Czembor and 
Vesk 2009; Czembor et al. 2011). This example describes consequences for man-
agement that have direct applications to Bromus STSM and is summarized here as 
a model approach that should be integrated into STSM for Bromus or other invaders 
in the semiarid western United States.

The example considered three sources of uncertainty: variation among experts, 
imperfect knowledge, and system stochasticity. To incorporate variation among 
experts, experts were provided with an STM and they specified how transitions 
would affect state change and the rate of each transition occurrence. In this way, 
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experts’ own understanding of ecosystem dynamics was quantified and used to 
identify variation among experts.

Uncertainty due to imperfect knowledge occurs when an expert knows the 
approximate range for a model parameter, but is unsure of the exact, true value. 
Experts have provided single-value point estimates of transition rates in previous 
STSMs (e.g., Speirs-Bridge et al. 2010; McCarthy 2007) because, until recently, 
there was no option in STSM software to incorporate these bounds into models. 
However, using point estimates elicited from experts ignores imperfect knowledge 
and can lead to overconfidence in models and their predictions. Imperfect expert 
knowledge was addressed in the example by asking experts to estimate transition 
rates as a range of probable values, rather than as single-value point estimates. The 
ranges for each transition rate were converted to distributions; single points were 
sampled from distributions and compiled to create a set of replicate STSMs for each 
expert (Czembor et al. 2011).

Uncertainty due to system stochasticity arises because natural processes and dis-
turbances occur randomly in space and time. It is independent of the uncertainty 
caused by using expert opinion and reflects the inherent variation in natural systems. 
The example incorporated system stochasticity using the VDDT software, which 
relies on Monte-Carlo random sampling methods where the occurrence of a transi-
tion to any one cell at a specific timestep is probabilistic and varies over multiple 
simulations (ESSA Technologies Ltd. 2007).

Once STSMs were constructed and simulations were complete, the example 
quantified which of the three sources of uncertainty contributed most to variance 
in model results (Quinn and Keough 2002). The authors conducted variance com-
ponents analysis in R software using linear mixed-effects models in a maximum 
likelihood framework (Faraway 2006; Gelman and Hill 2007) to determine the con-
tribution of each source of uncertainty to the variation in the proportion of cells in the 
desired vegetation state at the end of model simulations. Additional details regarding 
model parameterization and modeling can be found in Czembor et al. (2011).

All VDDT model results averaged together (i.e., with no consideration of uncer-
tainty) indicated a slight increase in the desired vegetation state (low-density 
mature) over time, increasing from 6 % of the landscape to 15.6 % (Fig. 13.4). 
However, the model results for each expert separately are quite different from each 
other, with roughly 7.5–11.9 % of the landscape in the desired state for Experts 3–5, 
but up to 33.5 % predicted to occur in the desired state (Expert 2). Due to the simi-
larity in results for Experts 1 and 2, it is interesting to note that these experts identi-
fied themselves as having expertise primarily in ecology, while Experts 3, 4, and 5 
identified themselves as having expertise in natural resource and forest manage-
ment. Variance due to imperfect knowledge (inner bars) was relatively constant over 
model simulations, while variance due to system stochasticity (outer bars) differed 
among experts’ models and increased over time, particularly for Experts 1 and 5.

The results of the variance components analysis indicated that total variance in 
model results increased over time and reached equilibrium near the end of simula-
tions (Fig. 13.5). The majority of total variance was due to the differences among 
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experts (0.73), followed by system stochasticity (0.12), and then the imperfect 
knowledge component (0.01).

These results suggest that when a single or small group of similar experts pro-
vide the input to models, the results could deviate greatly from the true outcomes 
of vegetation management actions if the ecosystem dynamics are not well under-
stood. However, even though the model results showed high variance, it is impor-
tant to note that they are useful because they represent the current understanding of 
ecosystem dynamics and illustrate hypothetical depictions of landscape change. 
The large among-expert variance also makes selecting among management actions 
challenging because there is low confidence in model results. This variance could 
be reduced (i.e., masked) by subsampling similar individuals from available experts 
or aggregating opinions through consensus, both of which are very commonly 
done in rangeland management steering committees, at the risk of biasing results 
and to the detriment of management decisions. If experts are forced to form con-
sensus, this uncertainty cannot be identified and management actions may be sus-
ceptible to unexpected results. Ascertaining which parameters are most variable 
among experts and collecting monitoring data to determine true rates and effects of 
transitions is therefore needed, and may be necessary for STSM applications to 
Bromus invaders.

There is no evidence provided in the example for the minimum number of 
experts needed to ensure adequate confidence in model predictions. Minimum 
expert sample sizes as high as 50 have been recommended, though typically less 

Fig. 13.4 The average percent of cells in the desired vegetation state (low-density mature) over 
time, for all models combined and for each expert. Error bars are stacked and represent the stan-
dard deviations for the variance due to imperfect knowledge (90 % confidence; inner bars) and 
system stochasticity (from end of inner bars to outer bars). Results adapted from Czembor et al. 
(2011)
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than ten are sampled in practice because few appropriate experts are available 
(Czembor et al. 2011).

System stochasticity was a moderate source of variance in the model results for 
the Eucalyptus example. In VDDT, this variance reflects the stochastic sequence of 
disturbances over repeated simulations (i.e., transitions occur at random times 
within simulations, but with the same average probability through time across simu-
lations). While stochasticity in the rate of disturbances over time was not evaluated 
in the Eucalyptus example, this source of uncertainty can be incorporated into “tem-
poral multipliers” (see Sect. 13.3). Temporal transition multipliers were used to 
parameterize uncertainty in a study of the effects of the exotic annual grasses,  
B. tectorum, Taeniatherum caput-medusae L (medusahead), and Ventenata dubia 
(Leers) Coss. (North Africa grass), on native plant species in sagebrush steppe eco-
systems across years differing in wildfire occurrence (Creutzburg et al. 2014).

The variance in model results due to imperfect knowledge was the least impor-
tant source of uncertainty in this case study. The example incorporated imperfect 
knowledge using replicate models that used ranges of values for transition rates, but 

Fig. 13.5 Bar plots showing the variance due to among-expert uncertainty, imperfect knowledge, 
and system stochasticity every 10 years for 150 years. A 95 % Confidence Interval that corre-
sponds to a logit transformed variance of 0.73 (the among-expert variance at timestep 150) would 
span 3–46 % of modeled cells in the desired vegetation state. Results adapted from Czembor et al. 
(2011)
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it is also possible to incorporate imperfect knowledge through sensitivity analyses. 
Evers et al. (2013) tested sensitivity of imperfect knowledge by adding, removing, 
or changing probabilities of disturbance (derived from expert opinion) to determine 
vulnerability of model outputs to succession and interactions with exotic annual 
grasses such as B. tectorum in big sagebrush steppe (Artemisia tridentata Nutt. 
subsp. wyomingensis Beetle & Young (Wyoming big sagebrush). In doing so, they 
could ascertain the degree of model sensitivity and the potential magnitude of error 
if the expert estimates were incorrect.

The example illustrates how uncertainty due to expert opinion can cause large 
variation in model predictions. This has consequences for models constructed using 
expert opinion, which is common in rangeland management. The example also pro-
vides a template for how expert uncertainty can, and should, be incorporated into 
STSM for Bromus management.

13.3  Case Study: Simulating Predicted Climate Change 
Effects on B. tectorum

13.3.1  Introduction

The US National Environmental Policy Act (NEPA 1969) requires federal agencies 
to integrate environmental values into their decision-making processes by consider-
ing the environmental impacts of their proposed actions and reasonable alternatives 
to those actions. Environmental values include climate change, although it was only 
recently added to lists of environmental concerns for the Bureau of Land Management 
(Manual 7300: Air Resource Management Program), US Forest Service (USFS, 
FSH 1909.12–Land Management Planning Handbook), and National Park Service 
(National Park Service: Climate Change Response Strategy). Rarely do federal 
planners have local data on climate change to make predictions; therefore, planners 
use more generic concepts to comment in NEPA documents. Climate change effects 
imply changing local trends and temporal variability for temperature, precipitation, 
evapotranspiration, and carbon dioxide. All of these variables can impact the growth 
and spread of invasive annual grasses, such as B. tectorum (Smith et al. 2000; Brown 
et al. 2004; Bradley 2009b), and native species, such as trees (Tausch and Nowak 
1999) in the US arid Intermountain West.

The purpose of this case study is to propose a new methodology of incorporating 
readily available data on future CO2 levels, precipitation, and temperature into the 
ecological processes of STSMs. To illustrate climate change effects on ecological 
systems and B. tectorum, we modeled Artemisia tridentata Nutt. spp. vaseyana 
(Rybd.) Beetle (mountain big sagebrush, 30–36 cm of average annual precipitation) 
sites within the boundary of Great Basin National Park in Nevada and adjacent  
A. tridentata spp. wyomingensis ( 25–30.4 cm of average annual precipitation) just 
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outside the boundary of the Park (Provencher et al. 2013). The A. tridentata spp. 
vaseyana system occurs at higher elevations on cooler and moister soils than the  
A. tridentata spp. wyomingensis system; therefore, this study assumed that A. tridentata 
spp. wyomingensis would respectively replace the lowest and middle elevations of 
A. tridentata spp. vaseyana in the Park with climate change, especially warming. 
Both ecological systems are readily invaded by B. tectorum, especially on relatively 
warmer and drier soils, as well as by trees such as Pinus monophylla Torr. & Frém. 
(singleleaf pinyon) and Juniperus osteosperma (Torr.) Little (Utah juniper). As a 
result, both A. tridentata spp. vaseyana and A. tridentata spp. wyomingensis sys-
tems needed to be modeled together to predict climate change effects on vegetation 
class abundances using the Path Landscape Model (Path) software (see footnote of 
Table 13.1 about Path). Using climate change data to affect ecological processes in 
STSMs is rather new (Halofsky et al. 2013); therefore, both the novelty of our 
approach and forecasted values of precipitation and temperature from global circu-
lation models introduced uncertainty in our simulation results. Another source of 
uncertainty was expert opinion, which was required as the scientific literature for 
Great Basin rangelands is data poor for model parameterization. We addressed 
uncertainty by using Monte-Carlo replicates that deliberately introduce strong vari-
ability into ecological processes. Therefore, this case study focuses more on dem-
onstrating a new methodology and less on the accuracy of ecological results.

13.3.2  Methods

13.3.2.1  State-and-Transition Models

The A. tridentata spp. vaseyana STM presented here is part of a group of 21 such 
models previously developed with Path for cost-effective management of Great 
Basin National Park’s ecological communities (Provencher et al. 2013). The A. tri-
dentata spp. wyomingensis STM was obtained from concurrent STSM efforts in 
nearby Hamlin Valley and Pine Valley Mountains of southwest Utah’s Great Basin, 
respectively, on lands managed by the US Department of Interior Bureau of Land 
Management and US Forest Service. Both STSM models originated during 2005–
2007 from LANDFIRE’s STSM development effort for the Great Basin mapping 
zone (Rollins 2009). These models were subsequently modified by (1) improving 
representation of fire disturbances, (2) adding uncharacteristic vegetation classes 
representing states or phases (e.g., invasive annual grassland), (3) incorporation of 
new disturbances observed in the field, including adding uncharacteristic ones such 
as invasive species expansion, and their rates, (4) adding management actions and 
budgets to the list of disturbances that affect states and transitions, and (5) introduc-
ing external sources of temporal variability that would modify disturbance rates 
over time (e.g., replacement fire). Models and results were reviewed by federal and 
state agency specialists, contractors, and academics during the Park’s project work-
shops and in workshops of previous projects (Low et al. 2010). Informal but exten-
sive sensitivity analyses were part of the review process.
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13.3.2.2  Range Shifts

The replacement of “cooler or wetter” ecological systems and their indicator spe-
cies by “warmer or drier” systems and their indicator species during climate change 
is called range shift. Theoretical bioclimatic envelope modeling (Rehfeldt et al. 
2006; Bradley 2009a) and one field study (Kelly and Goulden 2008) provided 
widely conflicting conclusions on the speed of range shifts. Thus, in this modeling 
example, the percentage of the area shifting from A. tridentata spp. vaseyana to A. 
tridentata spp. wyomingensis systems over 100 years was first set at 10 %. We itera-
tively determined that a rate (probability per year) of 0.0604 year−1 (i.e., 604 virtual 
pixels shifted per 10,000 pixels per year) matched the 10 % range shift over 100 
years. We further set values of 87 % and 13 % for the total area of A. tridentata spp. 
vaseyana that would be replaced by A. tridentata spp. wyomingensis and A. nova 
A. Nelson (black sagebrush), respectively, based on current sagebrush community 
proportions as found by Provencher et al. (2013). For simplicity, we only tracked 
the range shift between A. tridentata spp. vaseyana and A. tridentata spp. wyomin-
gensis for this chapter. Moreover, we gradually introduced the range shift by setting 
the initial value of range shift to zero under the assumption of no climate change at 
year zero, and then linearly increased temporal multipliers for range shifts to a value 
of two by year 75 of the simulation. Therefore, the average rate of range shift of 
0.0604 year−1 had a value of one over the 75 years of the time series to maintain rate 
integrity. In comparison, a control simulation without climate change would have a 
range shift temporal multiplier series equal to zero for all time intervals.

13.3.2.3  Climate Variability Effects on Ecological Processes

Temporal multipliers act as forcing factors of ecological processes in the STSM and 
also reflect hypotheses about the effects of climate variability on ecological pro-
cesses. One temporal multiplier is a non-dimensional number ≥0 in a yearly time 
series that multiplies a base disturbance rate in the STSM. For example, for a given 
year, a temporal multiplier of one implies no change in a disturbance rate, whereas 
a multiplier of zero is a complete suppression of the disturbance rate, and a multi-
plier of three triples the disturbance rate. A temporal multiplier can be obtained 
from time series data or theoretically derived. In the current case, multipliers vary 
for scenarios with or without climate change. Temporal multipliers are determined 
by dividing each yearly value of the time series (for example, area burned) by the 
temporal average of the time series, thus creating a non-dimensional time series 
with an average of one. Division by the time series’ average would remove the 
hypothesis of altered levels of the ecological process being modeled under climate 
change scenarios; thus each raw value of the new time series (e.g., future area 
burned) with climate change must be divided by the average of the time series not 
experiencing climate change.
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The dominant ecological processes of big sagebrush models, fire, drought, inva-
sive annual grass expansion, and tree expansion, all required temporal multipliers 
without and with climate change forcing. Forcing factors were based on future 
trends in atmospheric CO2, local temperature, and local precipitation and included:

 1. Increased expansion of invasive species (annual grasses, forbs, and trees) into 
uninvaded areas caused by CO2 fertilization effects during wetter than average 
years (Smith et al. 2000; Brown et al. 2004; Bradley 2009b);

 2. Decreased expansion of invasive species (annual grasses, forbs, and trees) into 
uninvaded areas during drier than average years regardless of CO2 concentra-
tions (Smith et al. 2000; Brown et al. 2004; Bradley 2009b);

 3. Longer fire return intervals in shrubland systems due to increased drought fre-
quency preventing fine fuel buildup (Westerling and Bryant 2008, Westerling 
2009; Abatzoglou and Kolden 2011; Littell et al. 2009); and

 4. Increased expansion of P. monophylla and J. osteosperma trees in shrublands 
caused by CO2 fertilization during wetter-than-average years (Tausch and Nowak 
1999).

The temporal multiplier for elevated CO2 was calculated from time series for 
future CO2 levels using the A2 emission scenario from IPCC’s (2013) report, simply 
as change in CO2 from time = 0 to the end of the simulation period (i.e., division of 
each yearly CO2 level by the level of the first year of simulation).

All simulations of temperature and precipitation effects were based on five rep-
licate Global Circulation Models (GCM) forecasts available from the Downscaled 
Climate Projections Archive (of 37 GCMs available; http://gdo-dcp.ucllnl.org/
downscaled_cmip_projections/dcpInterface.html, version 1.2, 06-August-2011) 
using the mean values for the Park and surrounding area. Normally, average values 
of an “ensemble” of many randomly selected GCM model outputs are used for 
simulations such as ours, given computing and cost limitations. The five model 
outputs were selected based on their marked differences for projected precipitation 
which varied much more that temperature among the models (listed in Fig. 13.6’s 
caption). One GCM selected forecasted increasing precipitation, albeit from initial 
low levels (first replicate), three forecasted no change in precipitation but had 
 different average precipitation levels (second, third, and fourth replicates), and one 
forecasted less precipitation over a century (fifth replicate). All data were displayed 
by year and month and our time series were 75 years into the future.

Five future time series replicates without climate change were created by using 
observed historic temperature and precipitation data obtained from the same library 
and for the same area using the same spatial averaging methods. We assumed that 
past climate reflected future climate without climate change and that recent warm-
ing of the past decades had not significantly affected the slow growing Great Basin 
vegetation as shown by Kelly and Goulden (2008) in a Mojave Desert elevation 
gradient. However, there was only one observed time series from 1950 to 1999, but 
five future replicates without climate change were needed. To create five replicates 
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and preserve potential seasonal and multiyear climate patterns in the data, the 1950 
to 1999 time series was wrapped around as a time loop (i.e., year 1950 followed 
year 1999) and was resampled by randomly selecting five start years (replicate 
#1 = 1956; replicate #2 = 1954; replicate #3 = 1972; replicate #4 = 1960; replicate 
#5 = 1990) until 75 years of data were accumulated. The next step was to use the 
historic and projected CO2, temperature, and precipitation to create the final tempo-
ral multipliers.
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Fig. 13.6 Replicated and calculated PDSI time series using Eqs. (13.1) and (13.2) assuming no 
climate change (resampled historic precipitation and temperature time series) and assuming the A2 
scenario from five Global Circulation Models as five 75-year replicates. Climate change legend: 
replicate #1 = mri_cgcm2_3_2a.2.sresa2; replicate #2 = ukmo_hadcm3.1.sresa2; replicate 
#3 = ncar_pcm1.1.sresa2; replicate #4 = ncar_ccsm3_0.1.sresa2; and replicate #5 = ncar_
ccsm3_0.2.sresa2
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All projections of temperature and precipitation were integrated into the Palmer 
Drought Severity Index (PDSI; Palmer 1965; Heddinghaus and Sabol 1991) from 
which temporal multipliers for replacement fire, drought, annual grass expansion, and 
tree expansion were obtained when combined with future projections of CO2. Because 
the literature offered no guidance on this subject, heuristic relationships were created 
to translate the variability of the PDSI into the local variability of drought, replace-
ment fire, invasive annual grass expansion, and tree expansion. Hopefully our heuris-
tic approach will spur research to improve upon our effort. Calculations of future 
values of the PDSI are found in the Appendix (Eqs. 13.1 and 13.2).

Drought was assumed to kill woody species (for trees; Pennisi 2010), sometimes 
mediated by triggering insect and disease attacks on trees, whereas wetter condi-
tions suppressed this disturbance. In the STSMs for A. tridentata spp. vaseyana and 
A. tridentata spp. wyomingensis, the drought disturbance operated both by partial 
thinning of the dominant upper-layer lifeform (i.e., shrubs or trees that characterize 
the vegetation class) within a vegetation class without causing a transition to another 
state or phase (about 90 % of probabilistic outcomes) and by killing most woody 
individuals of the dominant upper-layer lifeform and thus causing a transition to a 
younger succession class (10 % of probabilistic outcomes). As drier (PDSI < 0) or 
wetter (PDSI > 0) conditions, respectively, were observed in the GCM time series, 
the base rate for the drought disturbance in the STSMs was increased (>1) or 
decreased (<1) by the yearly value of the temporal multiplier (Eq. 13.3).

Invasive annual grass expansion and tree expansion into uninvaded areas did not 
include infilling by invasive annual grasses and native trees, although that could be 
done in a more complicated STM. Rates of invasive plant advance in the STSMs 
could vary by vegetation classes and ecological systems based on the natural resis-
tance of established vegetation (Chambers et al. 2014). We used a single  temperature 
multiplier to relate moisture (precipitation) to greater dispersal (more seeds) and, 
thus, invasion (Eq. 13.4). Fertilization with elevated CO2 was predicted to enhance 
the effect of a wetter condition but was a weaker effect overall (Nowak et al. 2004). 
We assumed that tree expansion was a much slower process than invasive annual 
grass expansion and also less responsive to PDSI (Eq. 13.5).

Fire frequency and total area burned have a complicated relationship to the PDSI 
in shrublands—they are more likely to burn if they first experience consecutive 
wetter-than-average years leading to accumulation of fine fuels that will more likely 
burn in a dry year immediately following the wet year sequence (Westerling and 
Bryant 2008, Littell et al. 2009; Westerling 2009). Area burned was first estimated 
by applying equations using PDSI and by assuming that the maximum fire size 
achieved under any scenario represents 10 % of the area sum of all shrubland–
woodland ecological systems for the shrubland–woodland temporal multiplier. We 
chose 10 % of the area because managers considered fires exceeding 10 % of Great 
Basin National Park’s area were very large and unusual according to the federal 
record. However, different managers may choose different percentages for different 
landscapes. The shrubland–woodland fire temporal multipliers considered the roles 
of 3 prior years of PDSI, more specifically that fine fuels will more likely burn in the 
current dry year immediately following 2 previous and consecutive wetter-than- 
average years during which fine fuels accumulated (Eq. 13.6).
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13.3.3  Results

Three uncharacteristic states of the A. tridentata spp. vaseyana model (coded as 
MSu to represent Mountain Sagebrush upland) were invaded by B. tectorum: 
shrubland with mixed annual grass and perennial grass (MSu-SAP), tree-domi-
nated shrubland with annual grass (MSu-TEA), and annual grassland (MSu-AG). 
Using remote sensing data to populate the initial conditions of the simulations 
(year = 0; Provencher et al. 2013), the MSu-TEA state was the most abundant 
(~2700 ha), followed by MSu-SAP (~1000 ha), whereas MSu-AG was nearly 
absent (~10 ha; Fig. 13.7). As a result of the simulated ecological processes with 
and without climate change, the area occupied by the MSu-SAP state gradually 
decreased over time as a result of fire, drought mortality, and tree encroachment. 
In the model’s transitions, the first two disturbances caused the increase in area of 
the MSu-AG state, which closely matched the decrease in area of the MSu-SAP 
state (Fig. 13.7). The small area of the MSu-TEA state primarily loss to fire after 
year 40 also contributed to the increase in area of the MSu-AG state. The area of 
the MSu-TEA state was relatively stable compared to the other states because the 
area that burned was offset by the new area of the MSu-SAP state that became 
encroached by trees.

The simulated effect of climate change was nearly undetectable for A. tridentata 
spp. vaseyana (Fig. 13.7). Because of the strong variability in drought cycles in the 
Great Basin, the trends in ecological processes caused by climate change indicated 
here are far smaller than their natural variability; therefore, the effects of climate 
change in STSMs must become strong to be detected, and this takes several decadal 
iterations. Although climate change differences between simulations were not 
clearly observable for A. tridentata spp. vaseyana, they still incrementally occurred 
because states from A. tridentata spp. wyomingensis replaced those of A. tridentata 
spp. vaseyana starting on the fifth year of simulations (Fig. 13.8). Only range shifts 
caused this replacement in our models. Furthermore, as a result of model design, 
these range shifts will first be observed in all early-succession phases and classes 
and will occur more rapidly in phases or states with shorter fire intervals because we 
assumed stand-replacing events remove the biomass of original indicator species 
and allow the new indicator species to colonize in the same phase or state (see also 
Halofsky et al. 2013; Creutzburg et al. 2014). Range shifts do not usually change the 
phase or state, they only change the potential for certain dominant indicator species 
(e.g., from MSu-AG to the annual grassland state of A. tridentata spp. 
wyomingensis).

Starting with no area of A. tridentata spp. wyomingensis within the Park, simu-
lated range shifts replacing A. tridentata spp. vaseyana with A. tridentata spp. wyo-
mingensis (coded as WS) first caused new increases in area of two classes of 
vegetation: early-succession (WS-A) and annual grassland (WS-AG; Fig. 13.8). 
The cumulative area converted to A. tridentata spp. wyomingensis represented a 
large fraction of the area initially in A. tridentata spp. vaseyana (about 10 %, as built 
into the STSM—see Range Shifts). Following STM transitions, the other three 
phases and state emerged, albeit with low areas, as the product of succession (from 
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Fig. 13.7 The area of vegetation classes invaded by B. tectorum (ha) in the A. tridentata spp. 
vaseyana ecological system assuming no climate change (NoCC; based on resampled historic 
data) and assuming climate change for the A2 scenario (CC) from five Global Circulation Models 
(GCM). Legend: MSu-AG = annual grassland; MSu-SAP = shrubland with annual and perennial 
grasses; and MSu-TEA = tree encroached or wooded shrubland invaded by annual grass. Climate 
change GCMs replicates are mri_cgcm2_3_2a.2.sresa2, ukmo_hadcm3.1.sresa2, ncar_
pcm1.1.sresa2, ncar_ccsm3_0.1.sresa2, and ncar_ccsm3_0.2.sresa2. Error bar represents the 95 % 
confidence interval for five replications
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Fig. 13.8 The area of reference and B. tectorum-invaded vegetation classes (ha) in the A. triden-
tata spp. wyomingensis ecological system assuming climate change for the A2 scenario from five 
Global Circulation Models. Legend: WS-A = early-succession; WS-B = mid-succession; 
WS-AG = annual grassland; WS-SAP = shrubland with annual and perennial grasses; and 
WS-TEA = tree encroached or wooded shrubland invaded by annual grass. Climate change GCMs 
replicates are mri_cgcm2_3_2a.2.sresa2, ukmo_hadcm3.1.sresa2, ncar_pcm1.1.sresa2, ncar_
ccsm3_0.1.sresa2, and ncar_ccsm3_0.2.sresa2. Error bar represents the 95 % confidence interval 
for five replications

WS-A to WS-B and from WS-SAP to WS-TEA) and invasion of uninvaded class by 
B. tectorum (from WS-B to WS-SAP; Fig. 13.8).

Three lessons learned from simulating A. tridentata spp. vaseyana and A. tri-
dentata spp. wyomingensis community transitions were that (1) it may take 
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decades to detect climate change effects on the distribution of vegetation classes 
within an ecological system because in the models natural “background” drought 
variability appears stronger than the variability caused by climate change in the 
Great Basin region of the United States, (2) range shifts between ecological sys-
tems, but not between phases or states, were accelerated by the short fire return 
interval of the annual grassland state, and (3) climate change did not cause more 
B. tectorum expansion 50 years into the future landscapes (e.g., MSu-AG in Fig. 
13.7) because the trends in temperature and precipitation from the GCMs 
decreased soil moisture (i.e., increased drought intensity) and, as a result, 
decreased B. tectorum expansion (and tree expansion) regardless of the level of 
CO2 fertilization. Range shifts, therefore, are predicted to occur more readily in 
the areas having an annual grassland state, because we hypothesized that range 
shifts occur through stand-replacing events in long-lived and drought-resistant 
shrublands and woodlands. The presence or dominance of B. tectorum shortens 
fire return intervals in landscapes, which in turn increase the likelihood of stand-
replacing events. We have not, however, simulated the process of invasion by a 
new invasive annual grass species adapted to warmer conditions, such as Bromus 
rubens L. (red brome), although that would be feasible with additional data (e.g., 
Bradley et al. 2015).

This case study integrated STSM to predict distribution of A. tridentata spp. 
vaseyana and A. tridentata spp. wyomingensis plant community phases and states 
over time with relationships between GCM outputs and their effects on the num-
ber of ecological disturbance occurrences per year in STMs. Finding ways to 
incorporate climate change variability into STSM processes was the most difficult 
and time-consuming part of the case study, and furthermore this step introduced 
 uncertainty. An alternative approach linking STSM to climate change effects was 
pioneered by the Integrated Landscape Assessment Project (ILAP; Halofsky et al. 
2013; Creutzburg et al. 2014), which linked vegetation change and wildfire trend 
data from the GCMs and the MC1 dynamic vegetation model with STMs to 
inform watershed-level prioritization of fuel treatments in Arizona, New Mexico, 
Oregon, and Washington. Whereas we used a bottom-up approach based on pre-
cipitation, temperature, and CO2 concentrations output from GCMs affecting dis-
turbances and range shifts, ILAP was a top-down process where GCMs and MC1 
determined range shifts and the variability of fire. ILAP’s process required down-
scaling GCMs and MC1 subcontinental coarse resolution predictions of climate 
change to the project areas, and meshing processes from widely different spatial 
scales. This is major source of uncertainty because MC1 predicted (1) changes in 
general lifeforms groups (shrublands, grasslands, and forest), but not different 
ecological systems within a group, and (2) changes in general fire activity regard-
less of how drought affects differently forested and shrubland systems (Taylor and 
Beaty 2005; Westerling and Bryant 2008; Littell et al. 2009; Westerling 2009). 
Moreover, MC1 only generated predictions for fire (Creutzburg et al. 2014), 
whereas our bottom-up method also introduced climate variability for drought, 
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invasive upland and riparian species expansion, tree expansion, insect outbreak, 
flooding, subalpine spring freezing, snow deposition, and tree encroachment (dif-
ferent from tree expansion).

13.4  Management Implications

The examples and case study in this chapter have the following management 
implications.

 1. STSM simulation outcomes presented in this chapter indicate that a program 
evaluating unlimited budgets for detection, monitoring, and treatments with a 
long-term scope is worth considering through STSM-based assessments. In 
landscapes where invasion by species such as Bromus is in its early stages allo-
cating resources toward monitoring may increase treatment success. STSMs 
such as the one discussed for P. ciliare can help better understand the trade-off 
between treatment and monitoring, thereby supporting management investment 
decisions.

 2. Uncertainty among experts over nonnative brome invasion rates and control/res-
toration success could waste already limited funding for natural resources man-
agement. How can diverse opinions be integrated into a robust management 
strategy for Bromus species? At a minimum, the research presented herein indi-
cates that a simple sensitivity analysis of expert opinion on nonnative brome 
invasion rates and control success should be explored with STSM where experts 
are able to offer different opinions. In this way, those environmental or manage-
ment parameters that are most uncertain (i.e., vary most between experts) can be 
identified for sensitivity analyses. Those uncertain parameters that matter most 
to management outcomes can then be used to focus efficient monitoring and data 
collection.

 3. Several scenarios can be explored using STSMs. Local managers planning 
for the conservation of natural resources far into the future (e.g., 50–100 
years) can implement programmatic changes in the next decade that might 
determine whether range shifts will happen sooner or later. For example, 
managers might have resources to only restore degraded annual grassland to 
a more resilient state of vegetation that would result in resistance to range 
shifts or to only control wildfires while maintaining the age diversity of 
phases in the reference state, thus resulting in plant communities more simi-
lar to the reference condition. These two scenarios could readily be explored 
with STSM.

As STSMs inform agency land management decisions and become more visible 
as a planning tool to other users, future applications will become more complicated 
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and address increasingly larger landscapes. Future applications will require invest-
ments in software enhancements to accelerate processing and to accomplish new 
processes. Given that the most commonly used STSM platforms are freeware, these 
investments must come from users, which implies that agency and private users 
should budget for software enhancements. In addition, while there are various 
examples of STSMs being used by public land management agencies (Forbis et al. 
2006; Provencher et al. 2007, 2013; Low et al. 2010), in most of these applications 
funding for training and technical support in applying the models has been a key 
requirement for the success of the initiative. Land management agencies often lack 
the technical expertise required to be able to apply STSMs without such support 
(Blankenship et al. 2013).

13.5  Ecological Research Needs

The following are some concepts that need additional consideration in order to 
move forward with applying STSMs to Bromus management.

 1. Evaluate how effective alternative inventory approaches are at detecting Bromus 
invasion at different stages. How costly are these different approaches? What is 
the most effective allocation of resources between management activities includ-
ing preventive restoration, inventory, treatment, and posttreatment maintenance? 
A combination of field experiments and STSM development is required to 
answer these questions at the landscape scale.

 2. Explore the reasons for divergence among experts, to refine expert estimates via 
discussion and comparison to new monitoring data, and to weight expert opinion 
using established datasets.

 3. Determine the rate and fate of range shifts of ecological systems potentially 
invaded by Bromus using field studies coupled with modeling approaches that do 
not assume infinite species dispersal rates and no resistance to drought.

 4. Empirically demonstrate that wildfires primarily fueled by Bromus will acceler-
ate range shifts (e.g., from A. tridentata spp. vaseyana to A. tridentata spp. wyo-
mingensis and A. nova) compared to unburned vegetation

 5. Standardize the methodology and science for creating multiple and potentially 
correlated temporal multipliers in STSMs that reflect different hypotheses 
between environmental variability and model disturbance rates.

 6. Determine to what extent we are uncertain about the rate of spread of invasive 
Bromus species across different ecological systems and about invasive Bromus 
species control success. What field data are already available to reduce uncer-
tainty in estimates for Bromus invasion rates (probability of spread and success-
ful establishment of new areas per year)? How might these sources of uncertainty 
affect vegetation management decisions?
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With the existing data available to land managers and the STSM framework as a 
tool to investigate alternative scenarios and management actions, the above research 
needs can be addressed. With time, it is hoped that these modeling strategies will 
assist management decisions and result in desired outcomes with higher efficiency 
and reduced resources.

Acknowledgments Any use of trade, product, or firm names is for descriptive purposes only and 
does not imply endorsement by the US Government.

 Appendix

 Calculating the Palmer Drought Severity Index

The Palmer Drought Severity Index (PDSI) time series was used to calculate the 
temporal multipliers for replacement fire, drought, annual grass invasion, and tree 
invasion. Drought is a major influence for these disturbances. PDSI measures long- 
term soil drought and is updated monthly (Palmer 1965; Heddinghaus and Sabol 
1991). Positive values indicate above average soil moisture (>3 is very wet), whereas 
negative values represent droughty soil (<−3 is very dry). A PDSI of zero is average 
soil moisture. The formula for PDSI at time t (month) is as follows:

 PDSI PDSIt t t t tk P P= ´ + ´ --0 897 31. ( / ) ( )  (13.1)

where Pt is precipitation during month t, Pt is average (historic) precipitation for 
month t, and k is a monthly climatic coefficient that weighs the local importance of 
(Pt − Pt) (Palmer 1965). For example, k might imply that (Pt − Pt) in January does not 
contribute as much to PDSI as the same deviation in precipitation observed in 
August (Palmer 1965). Although we downloaded monthly precipitation values and 
obtained monthly Pt from historic precipitation data (respectively, month, precipita-
tion [mm/day]: January, 0.8004; February, 0.8368; March, 1.0234; April, 0.9310; 
May, 0.9612; June, 0.6130; July, 0.6356; August, 0.7394; September, 0.6876; 
October, 0.7502; November, 0.7476; December, 0.6858), the value of kt is unknown 
and requires complicated field estimation based, among others, on evapotranspira-
tion (Palmer 1965). (To remove this complication and need for a heuristic equation, 
future projects will use the Standard Precipitation Index [Hayes et al. 1999]). 
Therefore, we made several arbitrary assumptions to imitate k using the month’s 
temperature differential. Specifically,

 k et
MaxT Tt/ . ( ). ( )3 1 5 1 0 15= ´ - - ´ -

 (13.2)

where MaxT = 31 (°C) is the maximum temperature observed, and Tt is the average 
temperature during month t. In this heuristic equation, higher temperatures cause 
smaller values to multiply (Pt − Pt) when monthly precipitation is higher and thus 
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PDSI becomes smaller (more evapotranspiration). The coefficients 1.5 and −0.15 
are fitting constants we iteratively selected that allow the PDSI to vary within the 
observed range and be responsive to changes in precipitation, primarily, and sec-
ondarily to temperature. Using the latest observed monthly PDSI from March 2012 
as the first PDSIt−1, we estimated future monthly PSDIs per replicate for 75 years 
using Eqs. (13.1) and (13.2) for both without and with climate change. Compared to 
the PDSI replicates without climate change, it is noticeable that three temporal rep-
licates of PDSI estimated for climate change effects were drier during certain 
decades only (replicates #1, 4, and 5), whereas the third replicate was wetter and the 
second replicate neutral (Fig. 13.6).

Because PDSI can be negative and the STSM software requires positive values, 
heuristic functions (arbitrary coefficients) were developed for drought, replacement 
fire, invasive annual grass expansion, and tree expansion that transformed negative 
values into positive values while maintaining the role of PDSI on the intensity of the 
disturbance. Not many flexible functions allow the conversion of negative values 
into positive ones while also accepting positive values; therefore, these curve fitting 
requirements led us to adopt functions with exponential components that could be 
easily calibrated. These functions do not calculate the rate of the disturbance, which 
is found in the STSM, but the temporal variability of the disturbance. All equations 
generated non-dimensional values and the final temporal multipliers were also 
non-dimensional.

 Drought Disturbance

Because PDSI can be negative, therefore incompatible with PATH’s format for 
temporal multipliers, we chose a negative exponential function for drought to 
create positive values that increased exponentially with more negative (drier) 
PDSI values:

 Yearly drought variability factor PDSI= ´ - ´0 6 0 6. .e  (13.3)

The parameters of this function (0.6 and −0.6) were chosen such that PDSI val-
ues close to −3 (very dry) were slightly greater than 3 (actually, 3.63) and that very 
severe droughts with PDSI of −5 (extreme drought) translated into slightly more 
than doubling of the function (12). Another consideration for curve fitting was that 
a mild drought characterized by a PDSI of −1 would be about equal to a neutral 
value of 1. Equation 13.3 is not the final temporal multiplier, however, because it is 
not divided by its average. In the absence of climate change effects, yearly values of 
Eq. (13.1) were divided by their temporal average over 75 years, whereas each 
yearly value of Eq. (13.3) with climate change was divided by the no-climate change 
average to reflect the hypothesis of altered levels.

13 State-and-Transition Models: Conceptual Versus Simulation Perspectives…



402

 Annual Grass Invasion and Tree Invasion Disturbances

The temporal multipliers for invasive annual grass expansion and tree expansion 
were calculated from two heuristic Gompertz equations (not including the CO2 fer-
tilization). The Gompertz equation is highly flexible for curve fitting and a special 
case of it is the negative exponential:

 

Yearly annual grass expansion variability factor =
´ - ´ -4 5 2 0. exp(e .. ( ))75 1

2
´ + ´PDSI TMCO  

(13.4)

 

Yearly tree expansion variability factor
PD

=
´ - ´ - ´2 5 2 0 75. exp( . (e SSI TMCO+ ´1

2
0 5)) .( )  

(13.5)

where TMCO2 is the temporal multiplier for CO2 levels, which is <2 for any yearly 
value with climate change and equal to one without climate change. In accordance 
with our hypothesized relationship between species expansion and soil moisture 
and CO2 levels, the effect of CO2 levels as expressed by its temporal multiplier 
(between 0 and 1) on variability is proportional, whereas the effect of PDSI is expo-
nential (i.e., greater). We arbitrarily dampened the effect of CO2 fertilization on 
trees by taking the square root of the CO2 temporal multiplier. The Gompertz equa-
tions allow for some expansion during even dry years (PDSI < 0), average expansion 
(temporal multiplier close to 1) during average moisture years, and a rapid rise of 
expansion (multiplier increasing to 4.5 and 2.5), respectively, for invasive annual 
grass expansion and tree expansion during very wet years. The parameters 4.5 and 
2.5 were chosen to match values from the initial Park’s study by Provencher et al. 
(2013). Equations 13.4 and 13.5 are not temporal multipliers, however, because they 
are not divided by their averages. In the absence of climate change effects, yearly 
values of Eqs. (13.4) and (13.5), respectively, were each divided by their temporal 
average over 75 years, whereas each yearly value of Eqs. (13.4) and (13.5) with 
climate change, respectively, was divided by the no-climate change average to 
reflect the hypothesis of altered levels.

 Fire

The shrubland–woodland fire temporal multipliers considered the roles of 3 years of 
PDSI, more specifically that fine fuels will more likely burn in the current dry year 
immediately following two previous and consecutive wetter-than-average years 
where fine fuels accumulated. The equation to calculate the temporal multipliers from 
shrubland fire contained two Gompertz functions to account for 3 years of PDSI:

 

Yearly shrubland woodland area burned variability factor

MaxFir

-
= ee PDSI PDSI PDS´ ´ -- ´ - ´ - + - ´ - - ´ - ´e et t3 0 7 1 1 0 7 2 3 21exp ( . ( . ) ) exp(( IIt ) )  

(13.6)
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where MaxFire = 1547 hectares and is 10 % of the area sum of all shrubland–wood-
land ecological systems. Equation 13.6 combines two Gompertz functions to 
accommodate negative and positive values of PDSI. The first part of Eq. (13.6) after 
MaxFire, representing fine fuels production, is a classic Gompertz function where a 
weighted sum is applied to soil moisture during 2 previous years (70 % of PDSI in 
year t−1 and 30 % of PDSI in year t−2). Wetter years (PDSI > 0) increase the value 
of this function (fine fuels accumulation) to a maximum of one. The first part is 
multiplied by the second function representing the current year, which is one minus 
another Gompertz function bound between zero and one. Increasingly drier soil 
moisture (PDSI < 0) causes the second part of Eq. (13.6) to increase to a maximum 
of one (maximum ignition probability). The PDSI values from the scenarios without 
and with climate change were used to calculate future area burned. Equation 13.6 is 
not the final temporal multiplier, however, because it is not divided by its average. 
In the absence of climate change effects, yearly values of Eq. (13.6) were divided by 
their temporal average over 75 years, whereas each yearly value of Eq. (13.6) with 
climate change was divided by the no-climate change average to reflect the hypoth-
esis of altered levels.
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