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Abstract: Disturbances are key processes in the carbon cycle of forests and other 

ecosystems. In recent decades, mountain pine beetle (MPB; Dendroctonus ponderosae) 

outbreaks have become more frequent and extensive in western North America. Remote 

sensing has the ability to fill the data gaps of long-term infestation monitoring, but the 

elimination of observational noise and attributing changes quantitatively are two main 

challenges in its effective application. Here, we present a forest growth trend analysis 

method that integrates Landsat temporal trajectories and decision tree techniques to derive 

annual forest disturbance maps over an 11-year period. The temporal trajectory component 

successfully captures the disturbance events as represented by spectral segments, whereas 

decision tree modeling efficiently recognizes and attributes events based upon the 

characteristics of the segments. Validated against a point set sampled across a gradient of 

MPB mortality, 86.74% to 94.00% overall accuracy was achieved with small variability in 

accuracy among years. In contrast, the overall accuracies of single-date classifications 

ranged from 37.20% to 75.20% and only become comparable with our approach when the 

training sample size was increased at least four-fold. This demonstrates that the advantages 

of this time series work flow exist in its small training sample size requirement. The easily 
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understandable, interpretable and modifiable characteristics of our approach suggest that it 

could be applicable to other ecoregions. 

Keywords: Landsat; mountain pine beetle; time-series classification; temporal 

segmentation; decision tree; sample size 

 

1. Introduction 

Understanding patterns of forest disturbances is important for assessing past and future ecosystem 

structure, function, productivity and diversity [1,2]. In recent years, mountain pine beetle (MPB) 

outbreaks have occurred over extensive areas, from British Columba in Canada to New Mexico in the 

United States. MPB is endemic to North America; however, the recent outbreaks have reached 

epidemic levels that have affected millions of hectares of forests [3]. The effects of MPB infestation 

range from altered surface fuel and wildfire hazards [4–7], changed vegetative composition [8], 

converted live carbon sinks to dead and slowly decaying carbon sources [9–11], impacted nutrient 

cycling and water quality [12,13], shifted evapotranspiration and albedo, modified local surface energy 

balance [14] and changed regional climate [15]. Those effects are predicted to increase as a 

consequence of the direct and indirect effects of climatic changes [16–18]. However, unlike wildfires 

that have received intensive mapping efforts at different scales, characterizations of the extent and 

severity of MPB using multi-temporal data have only begun to emerge [19–23]. 

Remote sensing, both with aerial photography and satellite imagery, has been widely acknowledged 

as a useful way to map tree mortality over large areas [24]. Landsat time series stacks (LTSS) are well 

suited to this type of analysis, because they are freely available, cover a long time period, have a broad 

spatial extent, are multispectral and have temporal continuity [20,25]. Two frequently used disturbance 

mapping approaches are (1) trajectory-reconstruction and (2) decision trees (DTs). Trajectory-based 

change detection examples include the Landsat-based detection of trends in disturbance and recovery 

algorithm (LandTrendr) [26] and the Vegetation Change Tracker [27–29]. Both methods recognize 

disturbance events by the rate of changes in time series of spectral properties. This makes the first and 

last years of the trajectory more difficult to judge, because the attribution for a particular year is 

entirely determined with regard to its spectral deviation from the two adjacent years [26].  

In addition, the event labeling procedure depends on pre-implemented modules in the software and, 

thus, is not flexible in adjusting to user-defined functions. DT approaches include work by  

Goodwin et al. [30] who utilized the annual changes in normalized difference moisture index and a set 

of thresholds to classify the presence of MPB infestation over 14 years, resulting in overall accuracies 

ranging from 71% to 86%. DT-based approaches have the capacity to integrate expert knowledge and 

flexible classification schemes. However, poor image quality from sensor drift, geometric  

misregistration and topographic and cloud shadows will introduce distortions to images and affect the 

accuracy of change detection. 

In this study, we describe a forest growth trend analysis method that integrates the robust change 

detection strengths of the trajectory reconstruction approach and the flexible user-defined advantages 

of DT approaches to characterize MPB mortality with an 11-year LTSS. We were interested in 
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determining whether or not this proposed method could reach an accuracy target of 85% or greater. 

Additionally, we compared its accuracy with single-date image classifications, which are still 

important and commonly used in disturbance mapping, especially in two-date post-classification 

change detection. We are aware that the accuracy of single-date image classification is not only 

determined by the input variables and classifiers, but is also heavily dependent on the quality and 

quantity of training samples [31], which may have larger impacts than the implemented techniques [32]. 

Thus, we also assessed the effect of different sample sizes on the accuracy of single-date image 

classifications, and we tested how much our proposed method can improve sampling efficiency as 

compared with the single-date classifiers. 

2. Study Area and Data 

2.1. Study Area 

Our study area was located in Grand County, in north-central Colorado (Figure 1), with a total land 

area of 4783 km
2
. This landscape is dominated by evergreen forests mainly composed of lodgepole 

pine (Pinus contorta), along with other tree species, as well as shrub and grass cover types. Summer in 

Grand County is typically hot and dry, which is suitable for MPB development. The average 

precipitation per year is approximately 400 mm, whereas the U.S. average is 930 mm. This county has 

one of the highest concentrations of lodgepole pines and has been heavily affected by the MPB 

outbreak that started around 2002 and reached the peak of tree mortality between 2005 and 2008 [33]. 

Figure 1. The study area used for our analyses. The Southern Rocky Mountain ecoregion 

is shown in blue, and Grand County, Colorado, USA, is shown in red. The imagery is a 

false-color composite of one Landsat image acquired on 21 August 2009. 
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2.2. Landsat Time Series Stack 

Grand County lies entirely within Landsat path 34 row 32. We restricted the image acquisition 

season from June to September, because this snow-free period is the recommended time window to 

detect MPB mortality [20]. For each year, one cloud-free or mildly contaminated image was selected 

to build the LTSS, and if no such image existed, several partly cloudy images with a similar phenology 

were used as replacements (Table 1). All data were processed to Level 1T (terrain corrected). 

Radiometric calibration and atmospheric correction for cloud and aerosol effects were performed using 

the Landsat Ecosystem Disturbance Adaptive Processing System [34]. Clouds and their shadows were 

automatically screened using the Function of mask (FMASK) algorithm [35]. Cloud removal effects 

were judged satisfactory via visual checking, though the extent of cloud cover was slightly 

overestimated. We accepted this false positive error, because commission errors were more desirable 

than omission errors in cloud filling. The number of clear observations in the LTSS over the period of 

2000 to 2011 is shown in Figure 2, and 98% of the study region contained more than 10 cloud-free 

observations. 

Table 1. Characteristics of the Landsat images used in this analysis. 

 Year Month and Day Julian Day Cloud Cover (%) Cloud Cover over MPB Host Area (%) * 

1 2000 July 13 193 42.35 
1.09 

2 2000 July 21 201 4.74 

3 2001 June 28 179 18.87 
4.24 

4 2001 July 22 203 17.05 

5 2002 July 1 182 1.92 0.15 

6 2003 July 4 185 5.48 0.49 

7 2004 July 8 188 10.49 7.94 

8 2005 September 11 254 2.08 0.25 

9 2006 July 28 209 2.30 1.26 

10 2007 July 31 212 20.39 
4.22 

11 2007 August 16 228 13.19 

12 2008 August 20 231 28.91 
9.79 

13 2008 September 5 247 36.83 

14 2009 August 21 233 2.04 0.00 

15 2010 September 25 268 3.37 0.89 

16 2011 August 11 223 22.13 
2.67 

17 2011 August 27 239 16.45 

Notes: MPB, mountain pine beetle; * the final cloud cover in a particular year in MPB host forest areas is 

after using clean pixels in one image to fill cloudy areas in another image that is in the same  

phenological state. 

Since MPBs attack a limited number of tree species, we confined our analysis to the extent of their 

host species in the LANDFIRE Refresh 2001 Existing Vegetation Type data layer (EVT), which was 

developed using circa 2001 (1999–2003) Landsat imagery [36]. The spatial resolution of the 

LANDFIRE data matches the LTSS, and the time period of the imagery from which the EVT data 

were derived depicts the pre-disturbance distribution of vegetation in Grand County. Currently, MPB 
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mortality is concentrated in lodgepole and ponderosa pine (Pinus ponderosa) forests, but other pine 

species, like limber pine (Pinus flexilis) and bristlecone pine (Pinus aristata), have also been found to 

be suitable hosts [37]. We included all EVT pixels that contain any of those species (Table S1),  

and smoothed the image with a 3 × 3 majority filter, which was designed to reduce observed  

salt-and-pepper effects and to minimize omission errors that are much higher than commission errors 

for the selected classes [38]. 

Figure 2. Forest type map for Grand County, from (a) the LANDFIRE existing vegetation 

type data and (b) the number of clear Landsat observations over the period of 2000 to 2011. 

 

2.3. Reference Sample Selection 

We randomly placed training samples over forested areas and reconstructed their disturbance 

history with the aid of normalized burn ratio (NBR) time series from the LTSS and the 1-m resolution 

U.S. Department of Agriculture (USDA) National Agricultural Imagery Program (NAIP) imagery 

(obtained from the USDA Geospatial Data Gateway), which were available for years 2005, 2009 and 

2011 in Grand County. The NBR time series were calculated using bands 4 and 7 from the Landsat 

imagery [39] and then multiplied by 100, so they could be represented as integer values instead of 

floating point values. For each training location, we identified the disturbance event type, duration and 

onset time (Table 2). Disturbance event types included: healthy, MPB mortality or clearcuts. Fire was 

not included, because large fires did not occur in our study area during the time period of this study 

(2000 to 2011), as indicated by the U.S. Geological Survey Monitoring Trends in Burn Severity 

database [40]. In total, we collected 106 training samples, among which, 53 were sites with MPB 
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mortality, 37 were clearcuts and 16 were healthy. We selected the relatively small number of training 

samples, because many studies suggested that trajectory-based methods perform well when trained 

with a relatively small sample size [23,26,41]. Statistical classifiers require more training data to fully 

represent each class in the feature space [42]. Thus, we expanded the original training sample size by 

10 times to a total of 1060 training samples. For those newly added samples, we only identified their 

disturbance types in the three years for which NAIP imagery were available instead of the whole NBR 

trajectory from the LTSS. 

For validation purposes, we randomly sampled points in strata that were formed in the complete 

temporal-spectral space as a representation of the gradient of MPB mortality. In this manner, our test 

samples were able to cover a complete spectrum of disturbance events and a range of mortality. 

Considering the large data volume of the 11-year LTSS, for which the dimension was  

2964 (rows) × 2901 (columns) × 102 (bands), we employed an efficient unsupervised classification 

tool, Clustering Based on Eigenspace Transformation, to improve the speed of clustering over 

conventional K-means without losing accuracy [43]. Fifty strata were developed, and we 

proportionately allocated a total of 100 points to each stratum. In the absence of sufficient ground and 

ancillary information, we visually interpreted the status for each point at each individual year. By 

checking the proportion of points in the three classes, we found that they are almost equally distributed 

without severe over- or under-representation; the mean number of validation samples in each disturbance 

type each year was 39 (healthy), 38 (MPB mortality) and 23 (clearcuts; Table S2). 

Table 2. Examples of normalized burn ratio (NBR) trajectories, National Agricultural 

Imagery Program (NAIP) data and in situ photos for healthy forest, MPB mortality and 

clearcut classes. 

Class Landsat NAIP Photo 

Healthy 

conifer forest 

 
  

MPB mortality 

 
 

 

Clearcut 
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3. Method 

3.1. Temporal Segmentation 

We developed time series of disturbance maps by combining the temporal trajectory analysis 

approach of LandTrendr [26] with a decision tree labeling procedure. Temporal trajectory analysis was 

used to decompose often noisy time series into a sequence of straight-line segments with distinct 

features designed to capture the event that happened for the duration of each segment. NBR [39] was 

chosen to represent the vegetation condition, because of its sensitivity to disturbance [26] and its 

capacity to minimize radiometric differences among images. The general procedure was to use a set of 

parameters to enhance the signal-to-noise ratio of the NBR time series in order to capture the salient 

events happening in each period or segment. Details can be found in Kennedy et al. [26], and the final 

effect of temporal segmentation, whether it was under-segmentation (split up into too few parts) or 

over-segmentation (subdivided into too many parts), was determined by the parameters listed in  

Table 3. Optimal LandTrendr parameter settings have been tested in the forests of the Northwest 

Pacific Region at both Landsat and MODIS scales [26,41]. However, because we are not aware of 

reported parameter results in the literature specific to the Southern Rocky Mountain ecoregion, we 

tested a range of candidate parameter values (Table 3). 

Table 3. LandTrendr parameters, descriptions, suggested values from Kennedy et al. (2010) [26] 

and the values tested for this study and ultimately selected for this study to reduce the raw 

normalized burn ratio (NBR) time series values to a number of linear segments. 

Parameter Description and Units 

Kennedy 

et al. 

(2010) [26] 

Values 

Tested 

Value 

Selected 

Despike 

An outlier will be removed if the proportional 

difference in NBR values between two adjacent 

points is less than this parameter. 

0.90 0.75; 0.9; 1 0.90 

Max_seg 
The maximum number of segments allowed in 

fitting. 
4 3; 4; 5 4 

VertexOvershoot 
The first round regression detected vertices can 

overshoot (max_seg + 1) vertices by this value. 
3 0; 3 0 

pval 

A pixel will be considered as no change if its  

p-value of the F-statistic for the entire trajectory 

is above this threshold. 

0.05 0.05; 0.1 0.1 

Recovery_threshold 

If the slope of a segment positively spans the 

whole spectral range within 

1/recovery_threshold years, it will be rejected. 

0.25 0.25; 1 0.25 

BestModelProportion 

A simpler model will be chosen if its  

F-statistic exceeds this proportion of the best 

fitting model. 

0.75 0.75; 1 0.75 

We ran LandTrendr on all combinations of the candidate parameter values, which resulted in  

144 unique combinations in total, and then visually compared their temporal segmentation results with the 
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original NBR time series for the 106 training samples. Thus, the calibration involved 15,264 comparisons. 

Each individual comparison for a sample was coded in a binary state using two criteria: the overall 

match in the shape and the timing of vertices. A good match occurred if the disturbance event that 

happened at that pixel was successfully captured, and the slope and magnitude for each segment 

deviated little from the central trend. The vertex timing was judged by how well the algorithm captured 

the onset and ending time of each disturbance event. If both criteria were satisfied, that comparison 

would be scored as 1, and otherwise, it would be 0. The optimal parameter set was decided based upon 

the pooled rankings across all training samples. The processing time took about 200 minutes (on 

5,376,538 unmasked pixels) for this step, which was run on a workstation with an Intel i7-2600  

3.4 GHz quad core CPU and 8 gigabytes of physical memory. 

3.2. Decision Tree-Based Spectral Segment Labeling 

The outputs of the temporal segmentation included the fitted segments, and a set of vertices 

connecting individual segments. We employed a DT to attribute disturbance events associated with 

those vertices and segments, with leaf nodes representing class labels and branches representing 

decision scenarios. The DT was built with predictors characterizing each segment: the disturbance 

occurrence onset time, duration and the magnitude of NBR change. We defined the onset time as the 

starting year of a segment. Magnitude was the absolute change in NBR between the ending year and 

the onset year, whereas duration was the time elapsed over the length of one segment. Different types 

of disturbance events were characterized by distinct features. For instance, clearcuts could be 

recognized by segments with a short duration and large, negative change in NBR, whereas MPB 

mortality segments tended to have a gradual, but long-duration decline in NBR values. 

Decision rules were used to identify forest conditions in a top-down sequence (Figure 3), and the 

definition of key parameters are explained in Table 4. These parameters were manually calibrated with 

the same training samples described in Section 3.1. Specifically: 

(1) Segments were separated into regrowth, stable or disturbed status according to their magnitude 

(mag) at the first level of the DT. If the absolute magnitude of one segment was less than the 

pre-set threshold (<thre_mag1), it was treated as disturbed. If the magnitude was within a 

threshold range (±thre_mag1), then it was considered to be stable. Otherwise, it was considered 

to be in a regrowth stage (>thre_mag1). 

(2) To label a segment as regrowth or stable, healthy vertices were identified based on an NBR 

threshold (thre_vertex1). Thus, a vertex in either a regrowth or stable period with its NBR value 

greater than the thre_vertex1 parameter was labeled as healthy. 

(3) Segments classified as disturbed in Step 2, were labeled as clearcuts if their rate of change in 

NBR was greater than a second threshold (thre_mag2); otherwise, segments were labeled as 

MPB mortality. The rate of change was defined as the average NBR change per year, which is a 

reflection of both magnitude and duration. The thre_mag2 parameter was designed based on  

the assumption that clearcuts always have more abrupt and rapid decreases in NBR than  

MPB mortality. 

(4) In the third level of the DT hierarchy, the label from the previous year (pre_label) was critical in 

determining the label for the current vertex. This was based on the assumption that events are 
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temporally dependent and forests can only logically transition from certain states to another.  

For instance, clearcuts often result in abrupt declines in NBR followed by persistent, but slow 

increases in NBR. Although the magnitude of change in the post-clearcut period is not as sharp 

as that of the pre-clearcut period, the vertices in the subsequent years will still be assigned as 

clearcut to ensure that the disturbance class labels have temporal consistency. 

(5) The final step involved attributing the vertices for the first year of the time series. We separated 

this step, because there was no vertex information prior to the first year. After MPB mortality, 

standing tree trunks and branch residuals remain on site, whereas clearcuts usually have a 

significant amount of bare ground. Thus, NBR values in areas with MPB mortality should 

generally be higher than they are in clearcut areas. The thre_vertex2 parameter defined the 

cutoff value for separating clearcuts and MPB mortality in these cases. 

Figure 3. The decision tree used to attribute temporal segments into the different 

disturbance classes. 

 

Table 4. Abbreviations and control parameters used in the decision tree. 

Parameter Description 

mag 
Magnitude of change in NBR between the current vertex and the following vertex: 

NBRnext year-NBRcurrent year. 

cur The NBR value for current vertex. 

pre_label The vertex label in the previous year. 

thre_mag1 The magnitude threshold that distinguished stable from either disturbance or recovery. 

thre_mag2 The magnitude threshold that separated MPB mortality from clearcut. 

thre_vertex1 
If the current vertex NBR value was above this threshold, it was treated as healthy, 

otherwise, it was further analyzed into disturbance types. 

thre_vertex2 
If first year’s vertex value was below this threshold, it was treated as a clearcut pixel and 

MPB mortality otherwise. 

Notes: MPB, mountain pine beetle; NBR, normalized burn ratio. 
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3.3. Post-Labeling Process 

Both the temporal segmentation and DT were run at the pixel level. Thus, it was possible that two 

adjacent pixels could simultaneously experience the same event, but were labeled differently due to 

errors. Since most disturbance events were patchy, the behavior of spatially adjacent pixels could be 

used to enhance the robustness of the classification. Based on this logic, we filled small holes in a large 

patch that were undetected or mislabeled. To do this, we first applied a 3 × 3 majority filter to reduce 

the salt-and-pepper effect and merged pixels into more complete patches, and then, we used a 3-year 

temporal filter to remove illogical transitions over time. For example, this step would change a pixel 

classified as MPB mortality in Year 1, healthy in Year 2 and MPB mortality in Year 3, to MPB 

mortality for all 3 years. 

3.4. Single-Date Classification 

Single-date mapping strategies were assessed using a traditional maximum likelihood classifier 

(MLC) and a random forest (RF) algorithm. MLC is a parametric method widely used in forest remote 

sensing [44]. In contrast, RF is a machine-learning technique that combines the results of many 

(thousands) of weak classifiers, such as classification and regression trees [45]. RF is often praised for 

its good overall performance, as well as robustness to noise [46]. We implemented the classifiers on 

both the raw spectral bands and a combination of raw spectral bands and spectral indices that were 

sensitive to forest defoliation and canopy water content (Table 5 [39,47–51]). 

Table 5. Spectral indices used in the single-date classifications, including formulas  

and references. 

Spectral Indices Formula Reference 

Normalized Difference 

Vegetation Index 
(b4 − b3)/(b4 + b3) [47] 

Normalized Difference Moisture 

Index 
(b4 − b5)/(b4 + b5) [48] 

Moisture Stress Index b5/b4 [49] 

Normalized Difference Wetness 

Index 
(b2 − b4)/(b2 + b4) [50] 

Normalized Burn Ratio (b4 − b7)/(b4 + b7) [39] 

Tasseled Cap Brightness 
0.3037 × b1 + 0.2793 × b2 + 0.4743 × b3 + 0.5585×b4 + 

0.5082 × b5 + 0.1863 × b7 
[51] 

Tasseled Cap Greenness 
−0.2848 × b1 − 0.2435 × b2 − 0.5436 × b3 + 0.7243 × b4 + 

0.084 × b5 − 0.18 × b7 
[51] 

Tasseled Cap Wetness  
0.1509 × b1 + 0.1973 × b2 + 0.3279 × b3 + 0.3406 × b4 − 

0.7112 × b5 − 0.4572 × b7 
[51] 

Note: band numbers in the formulas refer to the Landsat 5 band order. 

3.5. Accuracy Assessment and the Sample Size Effect 

We conducted both qualitative and quantitative accuracy assessments. First, a confusion matrix was 

created for each individual year, and associated accuracy measures were generated, including the 
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overall accuracy, kappa, producer’s accuracy and user’s accuracy. Second, we also visually evaluated 

the results by comparing the mapped spatio-temporal pattern of mortality with those observed by the 

Forest Health Monitoring Aerial Detection Survey (ADS) data [52]. The ADS data are generated by 

aerial sketchmapping, a technique for observing and mapping forest damage from an aircraft. Although 

ADS had been criticized for its imprecision at fine scales due to reasons, such as misregistration and 

the subjectiveness of the operators [23], it is reliable when used at coarse scales [52]. A pilot study 

initiated in the Rocky Mountain Region demonstrated that all three types of accuracies for the MPB 

detection in lodgepole pines exceeded 80% when the spatial tolerance was increased to 500 m [52]. 

We thus had confidence that the epicenters and patterns of spread derived from ADS polygons could 

be used as a reference dataset to compare against our results. We also altered the size of the training 

sample dataset from 106 to 1060 in increments of 10% and tested the effects of sample size on 

accuracy. This produced 10 corresponding sets of results to test the effect of sample size on accuracy 

metrics for both the MLC and RF classifications. 

4. Results 

4.1. Parameter Calibration for Temporal Segmentation and Decision Tree Labeling 

Parameter calibration in the forest growth trend analysis involved two parts. At the temporal 

segmentation stage, the set of parameters producing the highest score from all 144 combinations was 

chosen (Table 3). By using the same set of training samples, we also determined the four threshold 

values in the DT. We set the allowed variability in NBR for stable segments (thre_mag1) to be 20  

(the unit for all thresholds was NBR × 100) as reflected from Figure 4. The cut-off NBR value of 

vertices (thre_vertex1) to distinguish healthy forest from disturbances was 350. Threshold Thre_mag2, 

used to separate clearcuts from MPB mortality, was set at −150. A higher degree of overlap was 

observed between the post-clearcut and MPB mortality NBR values, and thus, we set thre_vertex2 to 

the third quantile of NBR values in clearcuts, which was 50. 

4.2. The Performance of Forest Growth Trend Analysis 

The forest growth trend analysis achieved an overall annual accuracy ranging from 86.74% to 

94.00%, and the average was 90.31% (Table 6). Except for the user’s accuracy for MPB mortality 

(84.81%) and the producer’s accuracy for clearcuts (77.30%), the mean value for all types of 

accuracies was above 85%. Larger standard deviations of accuracies among different years were found 

in the producer’s accuracy for healthy forest and the producer’s accuracy for clearcuts. As indicated 

from the confusion matrix (Table S2) and Figure 5, healthy pixels were well distinguished from the 

two disturbance types in the first few years and became less separable from MPB mortality after 2005. 

Pixels with MPB mortality were confused with either healthy or clearcut classes, but the proportion 

was not high. Confusion between clearcuts and healthy classes occurred in the first few years of our 

study and then between clearcuts and MPB mortality in later years. Visual examination showed that 

the shifting of MPB outbreak epicenters and the expansion of the outbreak boundaries was congruent 

between the two independent datasets (ADS and validation points). Maps of the onset year of MPB 
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mortality revealed that the MPB outbreak in Grand County was initiated at multiple locations and spread 

outward from those locations over time to affect nearly all habitats with suitable hosts (Figure 6). 

Figure 4. Tukey boxplot for (a) the averaged annual normalized burn ratio (NBR, 

multiplied by 100) changes of stable, regrowth, MPB mortality and clearcut plots;  

(b) current vertex values of post-MPB mortality, post-clearcut events and healthy plots. 

The bottom and top of the box are the first and third quartiles, and the band inside the box 

is the median. The whiskers represent the 1.5 interquartile range of the lower and  

upper quartile. 

  

(a) (b) 

Table 6. Accuracy assessment results for individual years of the time series classification. 

Year   Healthy MPB Mortality Clearcut 

 OA Kappa PA UA PA UA PA UA 

2000 89.00 82.21 100.00 83.02 88.89 94.12 65.00 100.00 

2001 90.00 84.23 100.00 95.74 100.00 79.49 58.33 100.00 

2002 89.00 82.88 100.00 95.56 93.75 78.95 64.00 94.12 

2003 93.00 88.92 100.00 93.18 94.87 92.50 75.00 93.75 

2004 92.00 87.41 100.00 100.00 89.74 89.74 78.95 78.95 

2005 91.00 85.51 91.49 97.73 97.14 80.95 77.78 100.00 

2006 86.74 78.99 72.97 96.43 95.24 78.43 94.74 94.74 

2007 94.00 90.49 92.11 100.00 97.67 89.36 89.47 94.44 

2008 91.00 86.20 82.35 96.55 97.50 84.78 92.31 96.00 

2009 91.00 85.81 87.10 96.43 100.00 84.62 80.00 100.00 

2010 90.00 84.56 97.14 97.14 95.00 84.44 72.00 90.00 

2011 87.00 79.64 81.25 92.86 95.35 80.39 80.00 95.24 

mean 90.31  84.74  92.03  95.39  95.43  84.81  77.30  94.77  

SD 2.18  3.45  9.25  4.46  3.47  5.47  11.35  5.92  

Notes: OA, overall accuracy; PA, producer’s accuracy; UA, user’s accuracy; SD, standard deviation. 

  



Remote Sens. 2014, 6 5708 

 

 

Figure 5. The proportion of validation samples that were erroneously labeled in other classes. 

 
Notes: H, healthy; M, MPB mortality; C, clearcut; H2M is explained as ―healthy samples classified to 

MPB mortality‖. 

Figure 6. (a) Classification results of the forest growth trend analysis in the years 2000, 

2005 and 2011; (b) maps of the onset year, duration and magnitude of mountain pine beetle 

(MPB) mortality. 

 

(a) 

 

(b) 
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4.3. Comparison with Single-Date Classification and Sample Size Effects 

The accuracy achieved by the single-date classification ranged between 37.20% and 75.20% and 

was lower than the time series classification, running on either the raw or combined spectral bands 

trained by the same set of samples (Table 7). We also observed that the time-series classification 

accuracies were relatively stable over time. In contrast, the single-date image classifications had high 

year-to-year variability in accuracy, which was shown by a distinct, increasing trend of the producer’s 

accuracy for MPB mortality from 2005 to 2011. The producer’s accuracy for healthy forest decreased 

substantially over the same time period. Table 7 also listed the accuracies generated from RF and MLC 

with only the raw spectral bands and the combined use of raw spectral bands and spectral indices. The 

accuracy of the RF classification improved when the spectral indices were included as predictors, and 

this effect was not evident with the MLC. Between the two single-date classification methods, RF had 

better overall performance than MLC. 

Table 7. Accuracy comparison among the time series classification, random forests (RF) 

and maximum likelihood classifier (MLC) with the same set of 2005, 2009 and 2011 

validation samples. Only the mountain pine beetle (MPB) mortality class is included here. 

Year  
Time-Series 

Trend Analysis 
RF MLC 

   raw combined raw combined 

2005 

UA 80.95 68.00 67.30 71.96 88.00 

PA 97.14 18.78 62.40 85.08 65.90 

OA 91.00 63.82 74.40 75.20 73.50 

2009 

UA 84.62 46.15 100.00 39.63 0.00 

PA 100.00 35.43 48.70 100.00 100.00 

OA 91.00 53.47 72.90 40.94 38.70 

2011 

UA 80.39 78.47 77.80 37.92 22.20 

PA 95.35 83.06 10.80 100.00 100.00 

OA 87.00 66.62 40.40 38.15 37.20 

Notes: ―raw‖ denotes classification with solely spectral data, and ―combined‖ denotes classification with the 

combined use of spectral and index data; PA, producer’s accuracy; UA, user’s accuracy; OA, overall accuracy. 

By varying the number of training samples used to train the MLC and RF classifiers in 10% 

increments to a maximum of 1060 training samples, we obtained 10 sets of results for the single-date 

classifications. Figure 7 shows the relationships between accuracy and sample size, for overall 

accuracy generated from the MLC and RF classifiers, as well as the producer’s accuracy and the user’s 

accuracy for the MPB mortality class. Despite some small fluctuations, all accuracies increased with 

the training sample size, and the changes were especially pronounced for the initial increases in sample 

size. The highest overall accuracies were achieved when 100%, 100% and 90% of the training samples 

were used by RF (89.43%, 90.48%, 88.66%) and 100% of the training samples were used by MLC 

(88.41%, 82.93%, 85.90%). This improvement was substantial compared to the results based on the 

original set of 106 training samples. The overall accuracy for RF increased by 30% on average from 

the smallest to the highest training sample size, 8% for the producer’s accuracy and 33% for the user’s 

accuracy. For MLC, the average increase was 40% in overall accuracy, 31% in the producer’s 
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accuracy and 43% in the user’s accuracy between the smallest and largest training sample sizes. We 

also noticed that after a certain training sample size, the accuracy stopped increasing or even slightly 

decreased, and the saturation position was around the 40% sample size (or 424 points) for all accuracy 

metrics and both classifiers. Accuracies after the saturation point were comparable to the time series  

classification results. 

Figure 7. Relationships between accuracy and sample size for the maximum likelihood 

classifier (MLC) and random forests (RF) using multiple training sets. Graphs arranged 

from left to right display the trends of overall accuracy, the producer’s accuracy and the 

user’s accuracy for the mountain pine beetle (MPB) mortality class as the training sample 

proportion increases from 0.1 to one. Blue and solid lines represent RF results, whereas 

green and dashed lines represent MLC results. Red arrows indicate the mean accuracies 

produced by the forest growth trend analysis in the years 2005, 2009 and 2011. 

 

5. Discussions 

For the single-date classification, we found the following: (1) The RF achieved better overall 

accuracy than MLC in detecting forest disturbances. MLC relies on assumptions about the data 

distribution (e.g., normally distributed), whereas the ensemble learning techniques used by RF do  

not [53]. Meanwhile, by grouping many individual classifiers, RF combined the strengths and 

minimized the weaknesses of each [54]. (2) MLC is less affected by the selection of input layers than 

RF. RF relies on all outputs produced by each individual tree that is built upon the random selection of 

input layers, and thus, a larger amount of features could create a higher probability of ―irrelevant‖ 

features being selected; but, when this occurs, it is usually negated by using the ensemble of results 

from individual trees. (3) The accuracies of single-date image classifications showed prominent  

year-to-year variability. The omission error for MPB mortality declined consistently from 2005 to 

2011, whereas the omission error for healthy forest increased significantly. During this period, Grand 

County was in a steady transition from a landscape dominated by healthy forests to a landscape 

dominated by ―grey-stage‖ forests. Not coincidently, the declining trend in the proportion of healthy 

forest matches the declining tendency of its omission errors over the years. 
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From the experiment on the sample size effect, on the one hand, we could determine the optimal 

sample size in the single-date MPB mortality mapping, which, to our knowledge, has not been 

discussed before. Both MLC and RF were sensitive to sample size, and several studies are in 

accordance with our conclusion [55–57]. Parametric algorithms are well known for their 

requirement of representative samples, and this requirement is usually satisfied by having a sufficiently 

large sample size [58]. Studies on sample-size effects for non-parametric classifiers are relatively rare. 

Rodriguez-Galiano et al. [59] observed a significant reduction in overall accuracy and the kappa values 

when the sample size reduced more than 50% of a non-parametric RF applied to Landsat images. 

In our case, if we take both accuracy and labor/economic/time costs into consideration, the most 

optimum sample size for single-date classification is four to five times the original training sample 

size, which included 106 samples. On the other hand, we could compare the efficiency of single- and 

multi-date classifications. By using the same 106 training samples, our time series approach 

substantially outperformed the single-date classification, and their accuracies were similar only after 

expanding the training sample size to a large number (e.g., 10 times), which matches the finding from 

another study concluding that either single- or multi-date methods in Landsat-based forest disturbance 

mapping could result in high classification accuracy [60], but our results confirm their findings only 

for large training sample sizes. 

Although the forest growth trend analysis method is promising in many ways, several shortcomings 

exist: (1) Regardless of the high overall accuracy, the commission error for clearcuts and the omission 

error for beetle mortality were relatively high. The commission errors in clearcuts could be caused by 

the spectral similarity between post-clearcut pixels dominated by successional vegetation and healthy 

forest pixels. Errors of commission for MPB mortality usually happened in areas hosting a mixture of 

grey stage trees and bare land, which could lead to a misclassification to clearcuts. (2) Parameter 

calibration was the most time-consuming part in the whole procedure and requires the expertise of 

image analysts. In some sense, the identification of various disturbance types using temporal 

trajectories is more challenging than the visual interpretation of false-color or true color image 

composites. Several potential solutions include the use of a tool called TimeSync, which was 

developed to aid with the temporal segmentation calibration and to verify the output from  

Landtrendr [60]. In addition, the Forest Inventory and Analysis (FIA) Program of the U.S. Forest 

Service consistently collects information on status and trends in forest species, health status, in total 

tree growth, mortality and removals by harvest. If FIA plots, or similar types of data, and their exact 

locations are available to users, they could aid the identification of the plots’ disturbance history. In 

terms of the labeling, although the manmade decision tree, as shown in Figure 3, can be easily 

interpreted, a machine learning-based decision tree could be employed to make this step fully automatic. 

6. Conclusions 

Reconstructed forest disturbance histories are needed for a range of applications, and our paper 

tested an effective and efficient approach to generating disturbance histories using the Landsat time 

series stack. Our algorithm was designed to take advantage of differences in the magnitude and 

direction of changes in spectral indices, which are proxies for the physiological processes following 

different types of forest disturbances. The site-specific accuracy assessment in the three validation 
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years indicated that the overall accuracy ranged from 86.74% to 94.00%, and the mean value of all 

types of accuracies was above 85%. Especially, our method outperformed standard classification 

approaches (maximum likelihood classification and random forest) by 15.8% to 52.3% when small 

training sample sizes (106 samples per study area) were used, which is a cost-saving advantage. 

Another strength of our strategy is that most parameters, especially at the attributing stage, are easily 

interpreted and modified, which will especially benefit users tackling similar problems of labeling 

change detection results. 

In conclusion, our results demonstrate the potential for a forest growth trend analysis to characterize 

forest disturbance events with an optimal sampling scheme, both in economic and time terms, at a 

satisfying mapping accuracy level. Some short-term goals for our further studies will include 

improving the labeling step by replacing it with an automated machine learning technique, linking the 

magnitude of change with more ecologically meaningful properties, such as vegetation cover, 

extending the algorithm to the ecoregion scale, building spatio-temporal dynamic outbreak models on 

the time series maps with projections into the future. In addition to those applications, the spatially 

explicit information produced by our approach could also serve as raw material to facilitate other 

research to uncover new patterns of disturbances occurring on the landscape and to investigate the 

drivers generating the patterns of disturbances. 
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