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This document summarizes the geospatial data used and the methodology employed to 
generate data that were not readily available from external sources.  
 
Data sources 
The primary geospatial layers used in the analyses are summarized in the GIS Data Sources 
Table provided on the The Nature Conservancy website (see link above). These data were 
used to derive the other geospatial data for our analyses in relation to the Brazilian Cerrado 
case study (e.g., production cost layers). In the data sources table, the Type column indicates 
whether the data were created by our research team (listed as “internal”) or whether they 
were available through an outside source (listed as “external”). Below we provide further 
details on the creation of the internal GIS layers.  
 
Delineation of the study area 
We spatially delineated the boundaries of the study area using two criteria: (1) the proposed 
sugarcane licensing area in our study region, which spans part of the Tijuco River watershed 
and other small rivers flowing directly into the São Simão Reservoir, and (2) the full extent of 
the sub-watershed that could be affected by potential commercial sugarcane expansion in the 
region. The final study area covers 373,043 ha and is bordered by a combination of watershed 
ridges and channels derived from a digital elevation model. This area covers the entire 
Ribeirão São Jerônimo watershed and follows the major stream channels found in that 
watershed (Fig. 1). 
 
Development of the current land use/land cover (LULC) layer 
 
Geometric correction, assessment, and image processing 
Because the study area is not covered by a single satellite scene, we used a combination of 
satellite imagery from SPOT (2.5m resolution, June 2010), ALOS PRISM (2.5 m resolution, 
May and June 2009) and ALOS AVNIR2 (10 m resolution, June 2009) (Fig. 2). The images 
were verified and, when necessary, orthorectified using 31 training points collected from the 
study area in October 2012 via a dual frequency geodesic GPS (Fig. 3). We used a fusion 
function between PRISM and the multispectral AVNIR 2 images to obtain a color image of 
2.5 m of spatial resolution. The final mosaic resolution meets the accuracy at the 1:25,000 
scale required by Brazilian standards (PEC A, highest grade, Decree 89.817 06/20/1984). The 
layer was projected using UTM Zone 22S projection, and the SIRGAS 2000 datum. 
 
LULC mapping 
To create a land use/land cover (LULC) dataset, we used supervised classification based on 
user-selected class training samples (forest, pasture, urban, etc) (Jensen 2004). The draft 
classification was subjected to expert review to reduce the errors and noise generated by the 
supervised process. We ground-truthed features with low level of certainty based on satellite 
imagery. The minimum mapping area was defined as one hectare, with smaller features 
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assigned to the dominant class within that spatial unit. We applied a boundary simplification 
process to reduce the total number of vertices of each feature. To supplement the land cover 
classification, we manually digitized the road networks, streams and water bodies.  
 
The final LULC map spans the study area and a 1000-meter buffer and is available as a 
shapefile (in a vector format). It includes 12 LULC classes (Table 1). The delineation, 
description and definition of classes was based on that developed by IBGE (2006) and the 
Forestry Survey of Minas Gerais State (State Forestry Institute – IEF, Scolforo, J. R. and L. 
M. T. Carvalho. 2006), and adapted by TNC staff for the region. A map of the current LULC 
layer is presented in Fig. 4. The predominant LULC class is pasture (229,367 ha, 61.5%); 
natural vegetation classes comprise 73,051 ha (19.6% of the study area) (Table 2).  
 
Development of the precipitation layer  
As an input into our water modeling, we created a precipitation layer from data from the 
National Institute of Meteorology (INMET, 
http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep, stations: 83514, 83521, 83565) 
and the National Water Agency (ANA, http://hidroweb.ana.gov.br/, stations: 1849002, 
1849026, 180002, 1851000, 1949003, 1949004, 1950011, 1950012, 1950018). Using data for 
the past 20 years (1993-2012), we calculated the annual average total rainfall for each station 
and assigned to the geographical location of the station. To create a surface precipitation 
layer from these point data, we used a spline interpolation method, which populates values 
for the spaces between points on the basis of a mathematical function that minimizes overall 
surface curvature and generates  a smooth surface that passes exactly through the input points 
(Mitas and Mitasova, 1988). The distribution of the interpolated precipitation showed a 
variation in the annual average rainfall (range: 1271 to 1403 mm), with precipitation 
increasing from west to east in our study area (Fig. 5). 
 
Development of the predictive vegetation layer  
To predict the geographic distribution of the natural vegetation types across the study area, 
we used Random Forests, which is a weak-learning ensemble method (Cutler et al., 2007; 
Breiman 2001). Random Forests has been shown to be a very robust predictive model when 
the underlying ecological or statistical processes are unknown (Evans et al., 2011; Evans and 
Cushman 2009; Falkowski et al., 2009). Because of the nonparametric and hierarchal nature 
of the model, issues associated with autocorrelation, nonlinearity, overfitting and non-
stationarity are minimized (Evans et al., 2011; Cutler et al., 2007).         
 
Several independent variables, hypothesized to represent abiotic ecological characteristics in 
the area, were utilized in the model. Our covariates included soil types, distance to streams 
and several geomorphometric variables: wetness index (Gessler et al., 1995), roughness 
(Riley et al., 1999), slope*cosine (aspect) (Stage 1976), relative slope position (Pike et al., 
2009), surface relief ratio (Pike and Wilson 1971), and topographic radiation index (Roberts 
and Cooper 1989) (Table 3). There are 12 soil types found in our region, with the most 
prevalent soil type being red latosols (latossolos vermelho) (Fig. 6, Table 4). The ecological 
rational behind these covariates are described in the associated citations and in Evans and 
Cushman (2009) and Murphy et al., (2010). The geomorphometric variables were calculated 
from a 90m SRTM digital elevation model (Rabus et al., 2003) using the Geomorphometric 
and Gradient modeling Toolbox in ArcGIS 10.0 (Evans et al., in prep). 
 
Starting with the current LULC polygon dataset (n=6298), we removed human-modified 
cover classes (pasture, cropland, urban areas, and roads). The remaining polygons (n=5333) 
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represented discrete LULC units spanning the five native vegetation types: cerradão, cerrado, 
riparian forest, semi-deciduous forest, and wetland (for definitions see Table 1). Because of 
the discrete (categorical) nature of the dependent variable (presence/absence) and the soil 
type covariate, we implemented a conditional sampling procedure to generate a sample that 
represented spatial and statistical variation in both the discrete and continuous process in the 
covariates (Cressie 1996). Using the software R (R core team 2012) and associated libraries 
sp, rgdal, and raster (Pebesma and Bivand, 2005; Bivand et al., 2013; Hijmans and van Etten 
2013), we developed a model that generated a 10% area-weighted random point sample for 
each discrete land unit (n=5333 polygons) resulting in 19,213 random samples. To avoid 
aggregation issues (Cressie 1996) and pseudoreplication (Hurlbert 1984), an isotropic kernel 
function (Warton and Shepherd 2010; Hengl et al., 2009) is applied within each polygon 
sample unit to ensure that the random sample is spatially balanced and independent. We then 
assigned the underlying raster value(s) for the associated land cover class (dependent 
variable) and the value from our candidate covariates (independent variables) to each point in 
the random sample. 
 
Because recursive partitioning models perform better on binary data (Ham et al., 2005), we 
ran an independent model for each habitat class, assigning 1 to the class being modeled and 0 
otherwise. For each model we predicted a 90m probability surface representing the positive 
[1] class. We then created a final class raster by assigning each pixel the class associated with 
the highest probability, using a p=0.45 threshold as the lower bound. Following Murphy et al. 
(2010), we applied the model selection procedure that uses permutated variable important 
measures and model optimization (i.e. minimizing both out-of-bag and within-class errors) to 
select covariates and the most parsimonious model(s); we found that all variables were 
contributing to the model. We also tested for class balance to avoid zero inflation problems 
(Evans et al., 2011; Evans and Cushman 2009; Jiménez-Valverde and Lobo 2006) and found 
all of our models were balanced. 
 
We evaluated model performance using percent correctly classified (PCC), sensitivity, 
specificity, precision recall rate (Fleiss and Cohen 1973), and the area under the ROC curve 
(Fawcett 2006; Dodd and Pepe 2003). These indicators revealed the strongest support for the 
cerradao, cerrado, and wetland classes, with marginal support for riparian forest and semi-
deciduous forest primarily due to interclass confusion between each other (Table 5). Given 
the inability to distinguish well between semi-deciduous and riparian forest types and the fact 
that they are similar in geographic distribution as well as vegetation communities for our 
region, these two habitat types were aggregated for our subsequent land use modeling. As a 
final step, we superimposed the natural vegetation classes from the current LULC layer onto 
the predicted vegetation and, in the case of discrepancies, changed the predicted vegetation 
class to the one in the current LULC. A mask was created using polygons, in the original 
LUCU data, classified as water. This mask was utilized to set background values (areas 
predicted as no data) to water in the resulting predictive model surface. 
 
A map of the predicted natural vegetation for our study area is presented in Fig. 7. For a 
comparison with the current landscape see Fig. 4 and Table 2. The covariates that had the 
strongest influence on predicting the different habitat types were elevation and roughness, 
followed by soil types and distance to water, and to a lesser extent compound topographic 
index and stream distance (Table 6). Cerradão was modeled as the dominant vegetation type 
(213,288 ha, 67.9%), followed by semi-deciduous (riparian) forest (67,159 ha, 21.4%) and 
lastly cerrado (18,818 ha, 6.0%) and wetlands (15,098 ha, 4.8%) (Fig.7). Cerradão was 
predicted at lower elevations in moderately wet areas and more fertile cambisols and latosols 
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soils (Fig. 8); cerrado on drier areas, higher elevation slopes, on latosols and red-yellow 
ultisols soils in the southern range (Fig. 9); semi-deciduous (riparian) forest around 
waterways and intermediate slopes on latisols soils (Fig. 10, 11); wetlands on the lowest 
elevations on latosols and entisols soils in wet areas adjacent to streams and water bodies 
(Fig. 12).  

 
Tree mapping 
To assess the costs of clearing and restoring existing vegetation on pastures, we created a 
layer of the current number of trees per pasture pixel. We used the Detect and vectorize 
individual trees function available for gvSIG under SEXTANTE algorithms 
(http://www.gvsig.org). Similar to the supervised imagery classification, which requires a 
user-assigned sample of LULC classes, the process requires a sample signature of an 
individual tree. For the tree mapping algorithm, the radiometric response of each pixel is 
considered along with the size and shape of pixels to be considered as an individual tree. 
Upon testing different bands, we selected band 2 (0.52-0.60µm-- green visible spectrum) of 
SPOT5 satellite due to the best response for this analysis at a 2.5 m of spatial resolution. To 
reduce the processing time and to exclude natural cerrado areas (where isolated trees can 
occur naturally), we used the existing pastures as a mask and delineated trees only in these 
agricultural areas. Our analysis was based on a total sample of 72 trees. The output was a 
point vector layer that contains a shape coefficient and the canopy surface area (Fig. 13). The 
shape coefficient depicts information about the tree canopy size and canopy shape, and 
relates to whether an individual tree or group of trees were delineated; a coefficient close to 1 
referenced a single mapped tree and lower values pertained to features of more than one tree.  
 
Land tenure mapping 
While some property boundaries are publicly available, full coverage was not available for 
our study area. Records of property boundaries are only available in paper format from notary 
offices. Even though some governmental agencies provide public records, the spatial 
coverage is usually poor. Therefore, we generated a spatial map of the farm boundaries for 
our study area based on 4 sources:  
 

1. All farm polygons available from the National Institute of Colonization 
and Land Reform (INCRA). 
2. A previous land tenure assessment ordered by Santa Vitória City Hall. 
3. Two surveys in local notary offices where we accessed maps and 
property descriptions. 
4. A field survey during which we collected spatial information of farm 
boundaries. 

 
The information collected was digitized from paper maps, or converted from CAD files, to a 
single geodatabase. Eventual overlaps or gaps between neighbor farms were corrected by 
checking boundaries against the satellite imagery available. 
 
Our efforts resulted in property boundaries for 74% of the study area or 1174 farms. Because 
some farms were only partially within our study area, we created artificial boundaries using 
roads, rivers, land use and households to delimit borders. The final land tenure layer contains 
1304 properties. For confidentiality reasons, we do not provide a spatial map of farm 
boundaries for our study area.
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Assessment of Forest Code compliance 
 
Summary of Forest Code requirements 
According to the Brazilian Forest Code (Federal law 12,651, May 25th, 2012),  all 
agricultural producers should set aside land for Permanent Preservation Areas (PPAs), 
which include riparian forests, stream headwaters, vegetation on steep terrain, and other 
hydrologically sensitive areas. We assumed all deforestation in the study area occurred 
before July 2008, which is realistic given the historic land use trajectory. The PPA 
requirements for the properties in the study region are summarized in Table 7.  
 
Depending on the size and location of properties, farmers are also required to maintain a 
portion of native vegetation in legal reserves (LRs). LR selection may be based on 
Watershed Planning, Ecological Economic Zoning, and/or mapped environmentally 
fragile areas and important areas for biodiversity. In the Cerrado and Atlantic Forest 
Biomes that make up most of central and southern Brazil, and where our study region 
lies, LR requirement is 20% for most farms. If a farm does not have the required natural 
vegetation and was deforested before 2008, PPAs can be counted towards the LR 
requirement. Farms smaller than 120 ha that lack sufficient remnants (and when 
conversion happened before 2008) are exempt from setting aside additional vegetation. 
Farms larger than 120 ha, and out of compliance, are required to have the necessary area 
of native vegetation restored. Alternatively, the requirements can be offset in available 
private or public areas elsewhere in the same watershed or biome. LRs are not required 
to form a single or continuous habitat patch. If the remnant area exceeds the 
requirements of the law, the surplus area can be legally converted or can be used to 
offset the deficit of other farms. 
 
Compliance options 
Although degraded or converted PPAs need to be restored in the specific locations 
defined by the law, the placement of LRs is flexible and depends on the preferences of 
individual landowners, the characteristics of the farm (such as area of existing natural 
vegetation and profitability), and the agreements with state environmental officials. The 
only exception is when the clearing of natural vegetation on a property occurred after 
2008. In such cases, a landowner is required to restore natural vegetation on the farm. 
 
The Forest Code offers three main options to for compliance with LR requirements. 
Under the first option, usually viable in areas with more natural vegetation, compliance 
within a property is met by selecting and designating current natural remnants within its 
boundaries as LRs (“protection option”). Under the second option, a portion of the 
currently converted land is restored to natural vegetation (“restoration option”). Once an 
area within a farm is selected for a LR, the landowner can either actively plant natural 
vegetation or can allow natural succession to take place. If the landowner chooses to 
follow a planting routine, they can continue to use some of area designated as LR as 
long as they actively restore at least 10% of the LR area every 2 years. In contrast, 
opting for restoration through natural succession requires that the landowner completely 
remove the LR designated portion of land from agricultural production immediately. 
The third option for LR compliance allows for the establishment of LR allocation 
outside of a landowner’s property by protecting existing natural fragments, as long as 
the selected land meets specific criteria established by the law (“offset option”). In 
particular, the offset area needs to match the LR size required, be located in the same 
biome, be on farms with surplus natural vegetation, and, in the case of offsetting on 
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another state, to be located in priority areas defined by state or federal government. 
Such ex-situ compensation can be economically viable, especially for properties with 
high quality soil on which highly profitable crops can be grown.  
 
Assessing Forest Code compliance 
We assessed compliance for each farm within our study area using the current land 
cover/land use and land tenure maps (described above). Since all natural vegetation 
classes from the LULC map can count towards the PPAs or LRs requirements, we did 
not differentiate between natural vegetation classes.   
 
First, we determined whether each farm met the PPA requirements summarized in Table 
8. We treated all existing natural remnants in hydrologically sensitive areas as protected. 
If a farm had less than the required PPA area, we used Table 7 to calculate the 
additional area needed. This procedure allowed us to generate a map of existing and 
needed PPA areas (as illustrated in Fig. 14). 
 
Second, we assessed whether each farm met the LR requirements. Farms between 120 
ha and 300 ha, require up to 20% of their land (which may include PPA to reach this 
amount) to be restored. If a farm has more natural vegetation than is required by the 
Forest Code, it is considered to have a surplus of remnants, which can be used to offset 
the LR requirements of other farms. For example, if a large farm (>120 ha) is covered 
with more than 20% natural vegetation, the additional area is considered surplus. 
According to the revised FC, for farms smaller than 120 ha there is no deficit, so all 
additional remnant area over required 20% of their land is considered as surplus. Farms 
can also have the exact area needed or have a deficit of natural vegetation. In the latter 
case, smaller farms (up to 120 ha) are not required to take additional measures to 
comply and only need to protect their current remnants. Farms larger than 120 ha need 
to restore or offset the deficit LR area, and the sum of offset, restored, or existing 
natural vegetation within the property is no less than 20% of the property area.   
 
Of the 1304 analyzed farms in our study area, only 254 farms (19.5%) were found to be 
in compliance with the Forest Code for both PPAs and LR requirements (Table 8). A 
total of 17,800 ha of PPAs and 51,148 ha of LRs were estimated to be required (Table 
9). A total of 5,827 ha of PPAs were currently degraded or converted and need to be 
restored; for LRs, the total deficit amounted to 973 ha. The prevalent type of farm, 
properties between 120 and 300 ha, had the highest total deficit. In aggregate, however, 
the net difference between surplus and deficit areas was relatively small (Table 9); this 
finding suggests that offsets limited to the watershed are a viable option to meet FC 
requirements in the region.  
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Figures 
 

 
Figure 1.  Map of Tijuco River watershed (in light blue) in relation to our study area as 
delineated by the Ribeirão São Jerônimo watershed (in red). Area of Indirect Influence 
is the region potentially affected by the expansion of sugarcane production (Dow 
Chemical 2008).    
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Figure 2.  Satellite imagery coverage in the study area. 
 

 
Figure 3. Ground point control distribution within the study area. 
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Figure 4. Land use/land cover map created for the study area (based on the Ribeirão São 
Jerônimo watershed) located in the state of Minas Gerais, Brazil. 
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Figure 5. Annual average rainfall (mm/year) interpolated based on the weather stations in the study area. 
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Figure 6. Distribution of soil types within the study area. Type CXbe corresponds to inceptisols; 
type GMd4-to gleisols, types LV-to red latosols, type PVAd7-to red-yellow ultisols, and type 
RQo1-to quartzsipsamment (Table 4). The most common soil type is red latosols (oxisols, 
although they vary in fertility).
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Figure 7. Predicted distributions of natural vegetation types for our study area modeled in the 
absence of human disturbance. 
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Figure 8. Partial plot of the covariates and the presence of cerradão (in dotted grey) and the 
conditional density plot of presence/absence of cerradao based on Bicubic spline (in black) 
(with exception of soil, which is show in binned median distance for categorical classes). 
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Figure 9. Partial plot of the covariates and the presence of cerrado (in dotted grey) and the 
conditional density plot of presence/absence of cerrado based on Bicubic spline (in black) 
(with exception of soil, which is show in binned median distance for categorical classes). 
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Figure 10. Partial plot of the covariates and the presence of riparian forest (in dotted grey) 
and the conditional density plot of presence/absence of riparian forest based on Bicubic 
spline (in black) (with exception of soil, which is show in binned median distance for 
categorical classes). 
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Figure 11. Partial plot of the covariates and the presence of semi-deciduous forest (in dotted 
grey) and the conditional density plot of presence/absence of semi-deciduous forest based on 
Bicubic spline (in black) (with exception of soil, which is show in binned median distance for 
categorical classes). 
 
 



 

Page 20 of 28 
 

 
Figure 12. Partial plot of the covariates and the presence of wetlands (in dotted grey) and the 
conditional density plot of presence/absence of wetlands based on Bicubic spline (in black) 
(with exception of soil, which is show in binned median distance for categorical classes).  
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Figure 13.  Sample map of the individual trees mapped within a pasture parcel. 
 

 
Figure 14. Sample map of farms showing Permanent Preservation Areas (PPAs) with habitat 
remnants and areas to be restored (or recovered) to achieve compliance with the Brazilian 
Forest Code. 
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Tables 
 

Table 1. Definitions of the land cover/land use (LULC) classes.  
Domain LULC Class Land Cover Description 

Natural Cerradão (Broad leaf Forest) Cerrado forest physiognomy with a continuous canopy at least 7 meters high and understory with few 
grasses. Differ from other forest because it presents a species composition typical of cerrado vegetation 
(Oliveira-Filho, 2006). 

Natural Cerrado (Shrubland) Cerrado physiognomies with two strata, one herbaceous and other shrub-arboreal. The percentage of each 
stratum defines the physiognomy. The category includes three Cerrado subtypes: Campo limpo (open 
grasslands, with less than 10% of shrubs), Campo sujo (grasslands and shrubs, no higher than 2m) and 
Cerrado senso stricto (20 - 50% of shrubs and trees, no higher than 7 meters) (Oliveira-Filho, 2006).  

Natural Semi-deciduous Forest Forest physiognomy with 15-25 meter high trees and dense understory. Semi-deciduous (20 to 70%). The 
vegetation included in this category has lower density of epiphytes and ferns when compared with 
ombrophylous forest and variable density of lianas and bamboo. It can occur along rivers (Riparian Forest) 
or in isolated patches. It includes also arboreal formation between ecotones, with different types of 
vegetation, and forest in advanced stage of regeneration. 

Natural Wetland Grassland vegetation on wet soils may include wetlands with one species of buriti palms (Mauritia 
flexuosa). 

Pasture Pasture Areas of grasses planted with African grasses (Brachiaria spp) that are intensively managed for livestock 
grazing. It includes “pasto limpo” (pasture) and “pasto sujo” (abandoned/degraded pasture). 

Sugarcane Sugarcane Sugarcane crops. 

Other Cultivated Row Crops Crops under annual rotation system. This category may include rice, cassava, corn, sorghum, and soybean 
as well as bananas and coconuts and other permanent crops that are harvested seasonally but do not 
require replanting each period.*  

Other Cultivated Eucalyptus Plantation Primarily Eucalyptus forest, but may include rubber trees.* 

Development Urban Development Areas covered by buildings and road system around villages and cities, with predominance of non-
agricultural artificial surfaces. 

Development Industrial/Commercial Industrial or commercial units, covered with artificial surfaces with no vegetation and located outside 
urban developments. This category includes airports, the SVAA plant, and farm stockyards. 

Water Water bodies Areas of open water, including inland rivers, streams, and ponds. 

* Occurrence and area of the crops is an estimate based on secondary data (IBGE, agricultural data 2011) (http://www.ibge.gov.br/). 
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Table 2. Areal and percentage coverage of land use /land cover (LULC) classes. 
LULC class Area (ha) % Area 
Cerrado (Shrubland) 13,682 3.7 
Cerradão (Broad leaf Forest) 27,120 7.3 
Semi-deciduous Forest 9,247 2.5 
Riparian forest 7,057 1.9 
Wetland 15,945 4.3 
Pasture 229,367 61.5 
Sugarcane 31,255 8.4 
Row Crops 268 0.1 
Eucalyptus Plantation 345 0.1 
Urban Development 684 0.2 
Industrial/Commercial 282 0.1 
Water bodies 37,790 10.1 

   All land cover classes 373,043 100.0 
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Table 3. Variables used in the Random Forest models to predict natural vegetation types across the study area. 
Variable Name Description Citation 

cti Compound topographic index Compound topographic index (deterministic wetness 
index) Moore et al. (1993) 

dstream Stream distance Euclidean distance to nearest stream 
 elev Elevation Elevation (shuttle topographic radar mission, STRM) Rabus et al. (2003) 

rough Roughness Roughness of elevation (3x3 window size) Murphy et al. (2009) 
scosa Slope*cosine (aspect) Slope percent x cosine (rad(aspect)) Stage (1976) 

slppost Slope position Relative slope position. Standardized difference between 
elevation and mean elevation in 5x5 window.  Murphy et al. (2009) 

soil Soil Soil type UFV/CETEC/UFLA/FEAM 
(2010) 

srr Surface relief ratio Surface relief ratio or rugosity in raster surface (3x3 
window size) Pike et al. (1971) 

trasp Topographic radaiation index Topographic radiation index Roberts & Cooper (1989) 

wdist Distance to water Euclidean distance to all water bodies (streams, ponds, 
reservoir)   
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Table 4. Standard productivity by soil type (soil type classification synchronized according 
to Silva et al, 2011). 

     Soil 
code 

Soil 
type  Brazilian soil category USDA soil category Soil fertility 

category 
1 CXbe8 Cambisols (CAMBISSOLO HÁPLICO) Inceptisols High 
2 GMd4 Gleisols (GLEISSOLO MELÂNICO) Entisols High 
3 LVd1 Latisols (LATOSSOLOS VERMELHO) Red latosols (oxisols) Medium/low 
4 LVd11 Latisols (LATOSSOLOS VERMELHO) Red latosols (oxisols) Medium/low 
5 LVd2 Latisols (LATOSSOLOS VERMELHO) Red latosols (oxisols) Medium/low 
6 LVd6 Latisols (LATOSSOLOS VERMELHO) Red latosols (oxisols) Medium/low 
7 LVdf1 Latisols (LATOSSOLOS VERMELHO) Red latosols (oxisols) Medium/low 
8 LVdf2 Latisols (LATOSSOLOS VERMELHO) Red latosols (oxisols) Medium/low 
9 LVef1 Latisols (LATOSSOLOS VERMELHO) Red latosols (oxisols) High 

10 LVef2 Latisols (LATOSSOLOS VERMELHO) Red latosols (oxisols) High 
11 PVAd7 ARGISSOLO VERMELHO-AMARELO Red-yellow ultisols Medium/low 
12 RQo1 NEOSSOLO QUARTZARÊNICO Quartzipsamment Medium/low 

 
 
 
 
Table 5. Model validation statistics including: percent correctly classified (PCC),1 Bootstrap 
error (mean percent error across n=999 model randomizations)2, sensitivity,3 specificity4, 
precision,5 and the area under the receiver operator curve (AUC/ROC).6 

       
Class PCC Bootstrap 

error Sensitivity Specificity Precision ROC/AUC 

Cerradao 0.91 0.09 0.76 0.96 0.89 0.86 
Cerrado 0.92 0.07 0.56 0.96 0.69 0.77 

Riparian Forest 0.88 0.12 0.26 0.98 0.68 0.62 

Semi-deciduous 
Forest 0.91 0.09 0.35 0.98 0.67 0.67 

Wetland 0.86 0.14 0.57 0.93 0.68 0.75 

                                                           
1 PCC is the percent of observations that are correctly classified for a given habitat type. 
2 Bootstrap error (or out-of-bag error) is the total percent incorrectly classified for each habitat type based on the 
number of randomizations. 
3 Sensitivity is the percent actual positive values correctly predicted to be positive, and is complimentary to the 
false negative rate. It is calculated as TP/(TP + FN), where TP = true positive, FN = false negative. 
4 Specificity is the percent true negatives (0) values correctly predicted as such by the model, and is 
complimentary to the false positive rate. It is calculated as TN/(TN + FP), where TN = true negative, FP = false 
positive. 
5 Precision is the percent of retrieved positives that are relevant. It is calculated as TP/(TP + TN), where TP = 
true positive, TN = true negative. 
6 AUC/ROC is the area under the curve when the true positive rate is plotted against the false positive rate, or 
alternatively sensitivity against specificity. More information is available here: http://rocr.bioinf.mpi-
sb.mpg.de/ROCR.pdf. 
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Table 6. Variable Importance Measures (VIM) for each covariate in the model. Covariates 
with VIMs greater than 0.50 are highlighted as they had greatest influence on the discernment 
of each natural vegetation type. 

 
          

  
Cerrado Cerradao Riparian 

Forest 
Semideciduous 

Forest Wetland 

cti 0.34 0.46 0.51 0.33 0.43 
dstream 0.20 0.62 0.41 0.22 0.40 
elev 1.00 0.84 1.00 0.91 1.00 
rough 0.61 0.90 0.67 0.50 0.72 
scosa 0.39 0.28 0.30 0.31 0.21 
slppost 0.22 0.23 0.23 0.23 0.16 
soil 0.59 0.87 0.47 1.00 0.50 
srr 0.13 0.30 0.30 0.22 0.23 
trasp 0.15 0.17 0.22 0.20 0.19 
wdist 0.21 1.00 0.53 0.23 0.54 
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Table 7. Spatial requirements for Permanent Preservation Areas (PPAs) based on the Forest 
Code, and guidelines for compliance when lands were deforested prior to 2008. 
PPA Type Requirement Farm Size Minimum 

Requirement 
Riparian Buffers Depends on river 

width: 
Up to 10m = 30m 
10 to 50m = 50m 
50 to 200m = 100m 
200 to 600m = 200m 
Over 600m = 500m 

Up to 30 ha 5m 
30 to 60 ha 8m 
60 to 120 ha 15m 
120 to 300 ha 20m to 100m 
Over 300 ha 30m to 100m 

Spring Buffer 50 m All 15m 
Reservoir Buffer Depending on reservoir 

area: 
Up to 1ha = no PPA 
Over 1 ha = 30 a 100m 

All Area between 
maximum operational 
contour and maximum 
potential contour 

Slope > 45 degrees All area All All area (except 
planted forests) 

Mesa border Buffer7 
 

100 m Up to 30 ha No requirement 
No requirement 
No requirement 

30 to 60 ha 
60 to 120 ha 
120 to 300 ha 100m (except planted 

forests) over 300 ha 
Wetlands 50 m Up to 30 ha 30 m 

30 m 
30 m 

30 to 60 ha 
60 to 120 ha 
120 to 300 ha 50 m 

50 m over 300 ha 
 
 
 
Table 8. Summary of Forest Code compliance for the study area (in number of farms). 

 Permanent Preservation Area 
(PPA) Compliance 

  Yes No 
Legal Reserve 

(LR) 
Compliance 

Yes 254 658 
No 45 347 

 
 
  

                                                           
7 A mesa is a term for tableland, an elevated area of land with flat top and steep slopes on sides (see 
http://en.wikipedia.org/wiki/Mesa). 
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Table 9. Forest Code requirements (in ha) for the study area by farm size. 
Rural Parcel 
Size 

# Parcels Parcel Area 
(Ha) 

Remnants 
(Ha) 

PPA 
required(Ha) 

Final Required 
LR (Ha) 

Surplus/ 
Deficit (LR) 

Up to 30 ha 128 2404.22 304.05 131.15 175.54 128.51 
30 to 60 ha 205 9393.55 1090.22 434.57 719.48 370.74 

60 to 120 ha 273 23742.24 3175.03 1224.73 2273.54 901.49 
120 to 300 ha 398 78471.88 12384.44 4508.89 13705.07 -1320.63 

> 300 ha 300 190754.9 33221.43 11501.45 34275.32 -1053.89 
Total 1304 304766.79 50175.17 17800.79 51148.95 -973.78 
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