GRASSLAND MONITORING TEAM STANDARDIZED MONITORING PROTOCOL

Version 7

Sara Vacek, Meredith Cornett, Daren Carlson, and Marissa Ahlering 24 October 2012

Background and Objectives

Grassland management goals in Minnesota, North Dakota, and South Dakota often include preservation or restoration of the historical native condition and providing habitat for wildlife. As endangered or declining ecosystems, remnants of tallgrass prairie are intrinsically important to preserve. Remnant and restored prairies in the northern Great Plains are threatened by encroaching invasive species, particularly cool-season introduced grasses and woody vegetation. The main focus of grassland management efforts is on protecting or enhancing the competitive ability of native plants. However, because we typically operate without clear objectives for prairie management and with little or no evaluation of management effects, there are considerable uncertainties about the most appropriate management tools and prescriptions.

In 2007, a multi-agency group of grassland managers and scientists formed the Grassland Monitoring Team (GMT). The group felt that a cooperative, standardized monitoring effort would improve our effectiveness at resolving uncertainties about grassland management. A collaborative effort will facilitate comparisons of data across ownerships and throughout the tallgrass prairie region of Minnesota. Our effort is focused on native prairie, but the methods could likely also be applied in restored areas.

In November 2007, several representatives from this group participated in a workshop with prairie ecologists and experts in adaptive management and modeling. At this workshop, we developed a rough framework for adaptive grassland management in Minnesota and the Northern Tallgrass Prairie Ecoregion of North Dakota and South Dakota. Generally, the adaptive management process involves defining a problem, defining potential management alternatives, predicting (modeling) the expected system response to those management alternatives, implementing the management and evaluating the results. Based on the monitoring data collected, future decisions can be adapted to best meet the goals of the project.

Our goal is to determine broad plant composition and structural changes over time in response to a suite of land management techniques including grazing, burning, and rest. These management alternatives are described in Appendix 1.

The partners in this project have overlapping goals, but it should be noted that each of us has some specific goals that are not addressed with this effort. Within the context of this project, the following objectives apply across all ownerships and participants.

- Maintain or increase the percentage cover of native prairie vegetation relative to invasive/exotic vegetation.
- Maintain the floristic diversity of native grassland ecosystems.
- Minimize the percentage cover of invasive/exotic vegetation.
- Maintain the structural diversity of native grassland ecosystems.

Because we ultimately want to assess the condition of grassland vegetation across tens of thousands of acres, the group selected a rapid assessment technique that represents an extensive, rather than an intensive, sampling approach. Rather than collecting detailed information on community composition, we selected variables that

will help us detect broad trends. Each variable (indicator) is related to the prairie structure and composition objectives described above. To accommodate partners who were interested in more detailed information, we designed a tiered monitoring protocol with more detailed levels of data collection; however, everyone will collect the same basic information.

Sampling Design

The population of interest for this project is remnant tallgrass prairie in Minnesota as well as eastern North Dakota and South Dakota. The subset available for sampling (management unit) is a field of native prairie that will undergo one consistent treatment at any given point in time. Management units can include federal, state or private properties, and are under the management of a project partner. Because many remnant prairies in Minnesota are small, we do not have a minimum size requirement for management units.

Sample units are permanent transects, distributed randomly in the management unit at a density of one transect per 10 acres. Management units will have a minimum of five transects, regardless of size. Transects are 25-m long and 0.1-m wide, and subdivided into fifty 0.5-m long quadrats (Grant et al. 2005). A list of potential transects are established in the office, then field checked to ensure they meet the study criteria. Use a random point generator tool to establish transect starting points (Appendix 2). Each point should be at least 25-m from the edge of the management unit and at least 50-m from another point. Exclude areas that are obviously in a wetland or heavily wooded area, are more than 75% nonvegetated (e.g., rock pile), or that cross between systems (i.e., upland grassland, lowland grassland, and wet meadow, as defined in Appendix 4). Create enough points to have 1 per 10 acres plus a few extra in case you have to reject some during the field check. Use Excel or other software to generate a random compass bearing for each transect. If it is determined during the field check that the transect as assigned will violate rejection criteria, first try running transect in the opposite direction (180 degrees). If the transect needs to be moved, the protocol in Appendix 3 should be used.

Because permanently marking transects in prairie systems can be difficult, this is not a requirement of the project. It is acceptable to use GPS to relocate transects, though we strongly recommend use of a sub-meter accuracy GPS unit. If participants choose to permanently mark their transects, they should consider likely management actions at the site. Aboveground posts are an option on management units that will not be grazed. Ground-level markers such as buried timber nails will be less affected by management activities, but can be very time-consuming to relocate. Whisker markers can help with relocation but will not withstand a fire.

Management units will be sampled at least once every three years, from July through September. This time period was chosen because it is the period during which the greatest number of tallgrass prairie plants can be identified. A new management unit will be sampled before the three year management period, and then will remain on a three year monitoring cycle as long as it is in the project. Because of the three year cycle, it is possible for participants to stagger their management units to lessen the monitoring burden in any one year:

	2011	2012	2013	2014	2015	2016	2017
Management Unit 1	Monitor	Manage	Manage	Manage - <i>and-</i> Monitor**	Manage	Manage	Manage - <i>and</i> - Monitor
Management Unit 2		Monitor	Manage	Manage	Manage - <i>and</i> - Monitor**	Manage	Manage

**This monitoring event is used both as the post-management survey for the previous cycle, and as the premonitoring survey for the upcoming cycle.

Field Methods

The protocol provides three options (A, B, and C) that are hierarchical in terms of the level of detail collected on plant community composition (Table 1). All options specify collecting the same basic structural information. Complex options incorporate all features of the simpler options, so that the most basic set of data (Option A) will be collected at every management unit, regardless of which protocol option is used. Each variable is described below; for those that differ based on the protocol option used, Table 1 describes the level of detail required for Options A, B, and C. One possibility for participants using either Options A or B might be to collaborate with partners to do a thorough Option C survey at more infrequent intervals, e.g., every 9 years.

Typical series of events at a transect:

- 1. Use GPS to navigate to the transect starting point.
- 2. Run out a 25-m cloth tape, staking it at both ends to prevent shifting during data collection.
- 3. OPTIONAL: Take a photo oriented towards the transect center from both ends of the transect.
- 4. Collect VOR readings at the center point of the transect (12.5 m). We recommend doing this before anything else, because activity of observers can disturb the vegetation cover. VOR readings are collected at the center point due to potential trampling of vegetation when locating the transect starting point.
- 5. If using a two-person team, we find that an efficient approach is to have one person identify and call out the plant codes and plant species present in each quadrat. The other person acts as the data recorder and also measures litter depth as the team moves along the transect.
- 6. When you come to the end of the transect, walk slowly along either side of the tape looking for the indicator species within the wider transect buffer. The buffer is 1.5 m (a Robel pole length) on both sides of the standard belt transect, making it 25 m X 3 m. Record indicator species even if they were already recorded in the quadrats.

Equipment needed:

- Compass
- GPS
- VOR pole
- meter stick
- rebar/stakes
- meter tape
- map and list of azimuths/coordinates

- datasheets (with extra) or mobile data recorder (if available)
- scratch paper
- pencils
- personal gear
- camera if doing photo points

Structure

<u>Visual Obstruction Reading (VOR).</u> At the center-point of the transect (12.5 m), take a set of VOR readings from the four cardinal directions (N, E, S, W) using a VOR (Robel) pole. The VOR pole has alternating decimeters clearly marked along the length of the pole (Robel et al. 1970). The observer will take VORs at a height of 1 m and a distance of 4 m from the pole. **Record the lowest half-decimeter mark visible on the pole** (i.e., not completely obscured by vegetation). It is recommended that you record VOR before doing anything else that may disturb the vegetation structure (e.g., running the transect).

Litter Depth. Using a meter stick or other suitable measuring device, **record litter depth to the nearest cm** at 5-m intervals along the transect (5, 10, 15, 20, 25 m). Measure litter depth from the soil surface to the top of the horizontal lying litter layer (exclude leaning standing, etc. litter).

Composition

<u>Plant groups.</u> Record a plant group code for each quadrat along the belt transect, using the hierarchical list of plant groups provided (Appendix 8). This list has been carefully designed to allow roll up into various levels. It is not species dependent, which allows the methods to be used in any grassland system regardless of the invasives of concern.

Plant codes represent a spectrum that spans from native-dominated to invasive-dominated. The plant codes represent a hierarchical tree, which functions as a dichotomous key. Arrival at the final code for an individual quadrat involves making four sets of independent decisions:

- Native (Natives >50% cover) vs. Invasive (Invasives >50% cover)
- All Native vs. Mostly Native OR Mostly Invasive vs. All Invasive
- Herbaceous vs. Low Shrub vs. Tall Shrub
- Graminoid vs. Graminoid-Forb vs. Forb

Regarding the grass-forb breakdowns – in previous versions of this protocol, there were four categories to describe the grass/forb composition (<25%, 25-50%, 50-75%, >75%). This version reduces that to three categories (<25%, 25-75%, >75%). Four categories may be more sensitive to detect change, but there were serious concerns about observer bias with the four categories. In our experience, the ends of this spectrum are easy to identify, which will make the decision faster and more consistent when being applied in the field. Additionally, we felt that in good quality prairie there can be lots of variation in the grass/forb composition. Having this broader range for the middle code (25-75%) will fit the "good" prairie and either extreme would indicate a problem.

Some general tips about assigning plant groups:

- Use foliar cover, as opposed to canopy cover, to make plant code determinations. *Foliar cover* "subtracts out" the "blank" spaces while *canopy cover* "fills in the gaps" between leaves, branches, etc.
- Assign 900 code ("Other," for bare ground, animal mounds, rock pile, etc.) if >75% of the quadrat is unvegetated.
- If >25% of the quadrat is vegetated, use relative percentages within the vegetated portion of the quadrat to make plant code determinations.
- To distinguish between low and tall shrub, use current height not the potential height of the species.
- In determining native/invasive composition, use the list of Tier 1 and 2 invasive species provided (Appendix 5). Note that some of these invasive species are actually native to parts of the region.
- Remember that the four classes (native/invasive; all native (invasive)/mostly native (invasive); herbaceous/low shrub/tall shrub; grass/grass-forb/forb) are independent decisions. Therefore, you should include woody species when making the native/invasive decision. The only exception is that grass/forb ignores woody components.
- Include dwarf shrubs (e.g., prairie rose, lead plant) with the Low Shrub category.

Table 1 Description of monitoring variables collected at the three hierarchical levels of detail.

Data	Plot	Option A	Option B ¹	Option C
Invasive Species	Quadrat level	Record all Tier 1 invasives ² present, and whether they are present (P) or dominant (D; >50% of the quadrat)	Record all Tier 1 invasives present, and whether they are present (P) or dominant (D; >50% of the quadrat)	Record all Tier 1 and Tier 2 invasives present, and assign into one of three cover classes (<10%, 10-50%, 51-100%)
	Transect level	Use checklist to record presence of Tier 1 invasives	Use checklist to record presence of Tier 1 and/or Tier 2 (optional) invasives	Use checklist to record presence of Tier 1 and Tier 2 invasives
Quality	Quadrat level	n/a	n/a	Record all Tier 1 or Tier2 quality indicators ³ and assign into one of three cover classes (<10%, 10-50%, 51-100%)
Quality indicators	Transect level	Record presence of Tier 1 quality indicators	Record presence of Tier 1 and/or or Tier 2 (optional) quality indicators	Record presence of Tier 1 or Tier 2 quality indicators not already recorded in quadrats.
Other species	Quadrat level	n/a	Record dominant native species from a select list (optional)	Record any other species present and assign into one of three cover classes (<10%, 10-50%, 51-100%)
	Transect level	n/a	n/a	Record presence of disturbance increaser indicators ⁴
Plant group	Quadrat level	Assign plant group code (see Appendix 8)	Assign plant group code (see Appendix 8)	Assign plant group code (see Appendix 8)
score	Transect level	n/a	n/a	n/a
Structure _	Quadrat level	Litter depth at 5m intervals (5, 10, 15, 20, 25m)	Litter depth at 5m intervals (5, 10, 15, 20, 25m)	Litter depth at 5m intervals (5, 10, 15, 20, 25m)
	Transect level	VOR at 12.5 m	VOR at 12.5 m	VOR at 12.5 m

¹Option B is not currently in use by any project participants. If new participants are interested in using this option, the protocol needs to be developed more thoroughly, including developing the "select" native species list.

²Tier 1 & 2 Invasives: See Appendix 5
³Tier 1 & 2 Quality Indicators: See Appendix 6
⁴Disturbance increaser indicators: see Appendix 7

Data handling, analysis, and reporting

The FWS Biological Monitoring and Database Team developed an Access database for this project. In addition to data entry capabilities, the relational database also has a couple of simple reporting functions that enable quick analysis of entered data at the end of each field season. The database will still be used to complete the adaptive management model portion of the project, but data entry and storage have now been moved to a central sharepoint site (see below). This site will eliminate the need to import data from separate sites into the central database.

A sharepoint site (https://connect.doi.gov/fws/Portal/grassland/SitePages/Home.aspx) has been established for the project. The most recent versions of protocols, datasheets, plant ID guides, etc. will be available at this site. Additionally, data entry for the project will be done through this site. Managers will be able to enter, edit and store their data through this site. Non-USFWS partners can access this site but will need to request a login.

Data entry should be completed and proofed each year by September 30th. Management recommendations and reports will be generated by October 10th, and therefore, no changes to the entered data can be made after this time.

Personnel requirements and training

Project coordinators are responsible for organizing training sessions, facilitating communication among the group members, generating transects for new management units, disseminating any changes to the protocol or database, and working with a statistician to analyze data.

Field office staff will be responsible for choosing management units in their work area, data collection, data entry, and ensuring data accuracy.

The protocol was designed to be used by field staff or seasonal employees with a working knowledge of tallgrass prairie plant species common in Minnesota. A training session will be provided as needed each year in late June or early July. Following the session, we will hold periodic quality assurance checks in the field by double-sampling a set of transects. This will be done fairly early in the season to allow time to correct inconsistencies among observers. We recommend that quality-assurance checks be held in conjunction with additional training in species identification.

References

Grant, T.A., E.M. Madden, R.K. Murphy, K.A. Smith, and M.P. Nenneman. 2004. Monitoring native prairie vegetation: The belt transect method. Ecological Restoration 22 (2):106-112.

Robel, R.J., J.N. Briggs, A.D. Dayton, and L.C. Hulbert. 1970. Relationships between visual obstruction measurements and weight of grassland vegetation. Journal of Range Management 23(4):295-297.

Appendices

Appendix 1. Management Alternatives

Annual Management Cycle

Defining the annual management cycle is more complex than it seems. Management cycles are usually defined using the growing season. However, the limits of the management cycle for this project are imposed by our monitoring schedule and which management actions are captured by the July-August monitoring schedule. Generally, the annual management cycle will run from September 1st through August 31st (See below).

We chose August 31st as the end date for our management year because that is the end of the monitoring period for the three-year time step. Any management that happens after this will not be captured by the monitoring data already collected, but management after this date will be included in the next three-year time step period. One potential exception to this management cycle is in the third year when monitoring occurs before August 31. Any management done after monitoring in the third year, even if the management occurs before September 1, is counted towards the next management year as the effects of that management were not captured in the monitoring. As a result, we recommend applying a rest treatment in the fall of Year 3 following the monitoring period (see below).

We have moved to a state-and-transition (S-T) model for this project. With a S-T model, we will provide management recommendations for a given management unit based on its current condition. If participants follow these recommendations, we will be able to increase the rate at which we learn about the effectiveness of these treatments for maintaining or enhancing the native plant communities. Because it will take a few months of processing for us to output the recommendations from the model after the monitoring data has been entered, we recommend using the rest treatment in the fall of Year 3 to wait to see what the model recommendations will be for management. The recommendations provided will be three suggested treatments for the next three-year time step (e.g., "Graze, Rest, Rest" or "Burn, Rest, Graze"), but they are not suggestions for the order of treatment. A "Burn, Rest, Rest" recommendation would simply suggest that the management unit be burned once within the next three years. Because Rest is a common treatment that will likely be recommended at least once for each management unit in a three-year period, it would be a safe treatment to default to the fall of Year 3 before management recommendations are available for the next time step.

Year	Sep	Oct	Nov	De c	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
Set Up											Mor	nitor
1					A	pply Tr	reatmen	ts to Mar	nagement	Unit		
2		Apply Treatments to Management Unit										
3	Apply Treatments to Management Unit Monitor						nitor					
4	Recommended Rest Apply Treatments to Management Unit											
5		Apply Treatments to Management Unit										
6	Apply Treatments to Management Unit Monitor						nitor					
7	Recommended Rest Apply Treatments to Management Unit											
8		Apply Treatments to Management Unit										
9	Apply Treatments to Management Unit Monitor				nitor							

Burning

Prescribed burns and even wildfires generally have distinct boundaries, but prescribed burn units can frequently shift over time. A management unit should be considered burned if $\geq 50\%$ of the vegetation in the management unit has been exposed to fire. Recognizing that prescribed burns or wildfires rarely affect or consume 100% of the vegetation in an area, this estimate of 50% would include areas that were exposed to the fire but for whatever reason may not have actually burned. Because fires can be extremely variable (and probably were historically), there is no intensity requirement for an area to be considered burned. Season of the burn should be

recorded in the database as the fire date, but a burn at any time during the annual management cycle will qualify as a burn.

Management information is recorded in the database at the transect level; therefore, if there are transects within a management unit that were not exposed to the fire (due to the fire not reaching an area of the unit and not due to patchiness of the burn), the management information for these transects can be recorded separately. For each transect within a management unit that has been burned, the following information should be recorded in the database: start date, end date (in the case of a wildfire), weather (relative humidity, maximum temperature, wind speed) and fire intensity (unburned, scorched, lightly burned, moderately burned, heavily burned, not applicable; see sharepoint site for a definitions document). A comments field will also be available to record any other desired information.

Grazing

A management unit should be classified as grazed if $\geq 25\%$ of the area or biomass in the unit has been impacted by livestock in some way. There are no limits on the number or type of animals or length of grazing, but we assume that participants in this project are interested in maintaining or enhancing the native plant communities. Therefore, grazing systems used should fall within a conservation philosophy.

Grazing is often a very patchy disturbance within a management unit. Therefore, a grazing treatment should always be assigned at the management unit level (not the transect level). The only exception to this would be if a manager was completely sure (likely due to logistical reasons, i.e., access was blocked somehow) that a portion of the unit (where some transects are located) was never visited by the animals for the entire management cycle. For each transect within a management unit that has been grazed, the following information should be recorded in the database: start date, end date, animal type and number of animals. If rotational grazing is used on a unit, then two separate entries/records will need to be made for each transect listing the separate start and end dates. A comments field will also be available to record any other desired information.

Combination of Burn and Graze Within One Annual Cycle

For this project, we hope to evaluate the impact of burning and grazing across separate years, as well as, the impact of burning and grazing within one annual cycle. We define this combination treatment as occurring when a burn and a graze event (as defined above) both occur within one annual cycle (Sept. 1^{st} – Aug. 31^{st}). This should capture most of the combination treatment effects for each growing season. The only combination treatment that will be missed by this is if a burn happens in the spring or summer followed by a grazing event after September 1^{st} of that calendar year. We ask participants either to refrain from using this combination or to simply realize that this combination effect will be missed by the model (i.e., interpreted as a burn in Management Year 1 and a graze in Management Year 2).

Patch burn grazing (PBG) will be considered under this combination treatment. The management unit should then be defined as the burn unit. Under the PBG system, the impact of grazing is not as easily estimated because the animals are not fenced on the unit. Therefore, if a participant is using PBG on a site, we ask them to do a little more work on the ground to assess the actual grazing impacts on the unit (i.e., whether > 25% of the area or biomass was impacted by the animals). This will need to be done annually for all the burn units, not just the unit burned in that year. The burn and grazing management information should be recorded as separate management records using the same fields described above.

Rest

A rest treatment can be classified at either the management unit or transect level. A rest treatment should be defined as no management actions taken on that unit or transect over the entire management cycle. A comments field will also be available to record any other desired information. Please use the comments field to record any smaller scale management actions that may have occurred on the site (e.g., weed spraying). If an entire management unit is hayed, it should not be included in the adaptive management model for that three year model period.

Appendix 2. Generating Transects

(updated 19 June 2012)

- 1. Create a new shapefile that excludes an area 25-m from the edge of the management unit. The transect will run in a randomly-assigned direction from the start point, so this prevents a transect from leaving the management unit. It also helps to prevent edge effects and allow for slight fluctuation in management boundaries.
 - a. Select the management unit
 - b. Buffer tool is found in ArcToolbox Analysis tools Proximity
 - c. Fill in necessary fields in the Buffer Tool dialog
 - For distance, choose linear unit, and enter -25 meters to create a 25-m buffer inside the management unit boundary.
 - On very small or linear management units, it may be necessary to decrease the buffer to fit a minimum of 5 transects (e.g., to 15-m from the management unit edge). In this case, you would have to force the random azimuth to assure that the transect stays within the management unit.
- 2. Generate random transect starting points
 - a. Select the buffered management unit
 - b. Create Random Points tool is found in ArcToolbox Data Management Tools Feature Class
 - c. Fill in necessary fields in the Random Point tool dialog
 - Be sure to use the buffer created in previous step as the constraining feature class
 - Will need one transect per 10 acres, plus some extras in case a transect must be rejected when visited in the field
 - Use 50-meters for the minimum distance allowed (forced spacing prevents two transects from crossing each other). On very small or linear management units, leave this blank or the tool will not generate enough points. Instead, force the spacing manually as you create points in the next step.
- 3. Create points
 - a. Use a random number generator (e.g., in Excel) to create a list of random azimuths to assign to the points.
 - In Excel, the function RANDBETWEEN can be used, with the bottom and top as 0 and 359, respectively. Simply copy the function across many cells to get a list of random numbers.
 - b. Either create a new feature class or create new points within an existing transect starting point feature class. Be sure it includes fields for Management_Unit, Trans_ID, and Azimuth. Be sure that the transect names match with the database.
 - c. The points will have a number assigned by the random point generator in the field, visit them in that order, ensuring that they do not meet any rejection criteria (p. 2 in protocol). Assign the Transect_ID once a transect is verified as acceptable in the field.

Appendix 3. Procedures for Moving a Transect

1. Flip the bearing of the transect 180 degrees. For example, if the initial transect bearing was 85 degrees, try running the transect 265 degrees. If the transect is still not within the target community after shifting the transect bearing 180 degrees, try the +90 degree bearing, then the +270 degree bearing.

2. If the 4 directions (in step 1) do not work, move the transect starting point 25 m from the initial starting point along the original bearing assignment. For example, if the 355 degree bearing (from the +270 degree adjustment) still falls in a non-target community, move the starting point 25 m in the 85 degree direction.

3. If step 2 is still unsuccessful, repeat step 1 at 25 m from the initial point (180 degree flip, +90, +270). For example, if 25 m from the initial starting point along the 85 degree bearing is within a non-target community, try moving 25 m out in a 85+180 = 265 degree bearing, then 85+90 = 175 degree bearing, then a 85+270 = 355 degree bearing.

4. If moving 25 m along the 4 bearings still falls within a non-target community, repeat step 3, but move 50 m.

5. If still unsuccessful after trying to move the starting point 50 m. Use a new random location from the extra coordinates created in the office or contact the project manager.

Notes on target communities:

While GMT monitoring targets upland grasslands, lowland grasslands, and wet meadows, many of the areas are naturally heterogeneous and will contain wetter depressions. Only move the transect if the area clearly crosses from one target community to another, or is in a non-target plant community. Do not move the transect if it includes areas that have shrubs as a result of lack of management (woody encroachment). Shrub swamps should be considered a different community and warrants moving the transect. Forested areas with >50% cover should be considered a different community and warrant moving the transect. Individual trees should not warrant moving the transect.

Appendix 4. Native Plant System Level Descriptions

(Excerpts from Minnesota Department of Natural Resources MNDNR. 2005. Field guide to the native plant communities of Minnesota: the Prairie Parkland and Tallgrass Aspen Parklands Provinces. Ecological Land Classification Program, Minnesota County Biological Survey, and Natural Heritage and Nongame Research Program. MNDNR St. Paul, MN.)

Upland Grass

Upland Prairie (UP) communities are herbaceous plant communities dominated by graminoid species, with a species-rich forb component that can approach codominance with the graminoids. The tall grass big bluestem (Andropogon gerardii) and the midheight grasses prairie dropseed (Sporobolus heterolepis) and little bluestem (Schizachyrium scoparium) are the most important graminoids. Indian grass (Sorghastrum nutans), a tall grass, and porcupine grass (Stipa spartea) and side-oats grama (Bouteloua curtipendula), both midheight grasses, are the most important associated graminoids. Sedges (Carex spp.) are sometimes common in UP communities but are typically a minor graminoid component. The most common and widespread woody species are the low semi-shrubs leadplant (Amorpha canescens) and prairie rose (Rosa arkansana), and the tall shrub wolfberry (Symphoricarpos occidentalis). Purple prairie clover (Dalea purpurea), heath aster (Aster ericoides) and stiff goldenrod (Solidago rigida) are common forbs. The main vegetation layer in UP communities is usually less than 40in (1m) high, although some forbs and the flowering stalks of the tall grasses exceed this height as the growing season progresses.

Lowland Grass

<u>Northern Wet Prairie</u>: Grass-dominated but forb-rich herbaceous communities, often with a strong shrub component, on somewhat poorly drained to very poorly drained loam soils formed in glaciolacustrine sediments, unsorted glacial till, or less frequently outwash deposits. Present primarily on level to very gently sloping sites. Flooded for brief periods at most; upper part of rooting zone is not saturated for most of growing season. Drought stress is infrequent, usually brief, and not severe. Fires were very frequent historically.

<u>Southern Wet Prairie</u>: Grass-dominated but forb-rich herbaceous communities on poorly drained to very poorly drained loam soils formed in lacustrine sediments, unsorted glacial till, or less frequently outwash deposits. Typically in slight depressions, sometimes on very gentle slopes. Flooded for brief periods at most; upper part of rooting zone is not saturated for most of growing season, but saturation usually persists in lower zone for much of season.

Wet Meadow

<u>Northern Wet Meadow/Carr</u>: Open wetlands dominated by dense cover of broad-leaved graminoids or tall shrubs. Present on mineral to sapric peat soils in basins and along streams.

<u>Southern Basin Wet Meadow/Carr</u>: Open wetlands dominated by dense cover of broad-leaved sedges. Typically present in small, closed, shallow basins isolated from groundwater inputs.

<u>Prairie Wet Meadow/Carr</u>: Open wetlands dominated by a dense cover of graminoids. Present in small, shallow depressions in the western and southern parts of the state.

Appendix 5. Invasive species lists.

This list was developed by Robert Dana (MCBS, 2008). Note that some species on this list are native to parts of Minnesota, but all are considered invasive threats to the integrity of a remnant tallgrass prairie plant community.

Code	Common Name	Scientific Name	Old Code
BROANN	Annual Bromes	B. japonicus, tectorum, secalinus	
AGRCRI	Crested Wheatgrass	Agropyron cristatum	
POACPX	Canada and Kentucky Bluegrass	Poa compressa, pratensis	
PHLPRA	Timothy	Phleum pratense	
BROINE	Smooth Brome	Bromus inermis	
ELYREP	Quack-grass	Elytrigia repens	
PHAARU	Reed Canary-grass	Phalaris arundinacea	
AGRGIG	Redtop	Agrostis gigantea/stolonifera	
EUPESU	Leafy Spurge	Euphorbia esula	
CIRVUL	Bull Thistle	Cirsium vulgare	
CARNUT	Musk Thistle	Carduus nutans	
CARACA	Plumeless Thistle	Carduus acanthoides	
CENSTO	Spotted Knapweed	Centaurea stoebe subsp. micranthos	CENMAC
LEUVUL	Ox-eye Daisy	Leucanthemum vulgare	CHRLEU
DAUCAR	Queen Anne's Lace	Daucus carota	
CORVAR	Crown-vetch	Coronilla varia	
LOTCOR	Birdsfoot Trefoil	Lotus corniculatus	
MEDSAT	Alfalfa	Medicago sativa	
TRIPRA	Red & Alsike clovers	Trifolium pratense, hybridum	
CIRARV	Canada Thistle	Cirsium arvense	CIRCAN
ARTABS	Absinthe Sagewort	Artemisia absinthium	
MELISP	Sweet Clovers	Melilotus alba & officinalis	
TRIREP	White Clover	Trifolium repens	
LINVUL	Butter-and-eggs	Linaria vulgaris	
PASSAT	Parsnip	Pastinaca sativa	
SONARV	Sow-thistle	Sonchus arvensis	
LONTAT	Tartarian Honeysuckle	Lonicera tatarica	
RHACAT	Common Buckthorn	Rhamnus cathartica	
FRAALN	Glossy Buckthorn	Frangula alnus	RHAFRA
ELAANG	Russian Olive	Elaeagnus angustifolia	
ULMPUM	Siberian Elm	Ulmus pumila	
ROBPSE	Black Locust	Robinia pseudoacacia	
FRAPEN	Green Ash	Fraxinus pennsylvanica	
ACENEG	Boxelder	Acer negundo	
ULMAME	American Elm	Ulmus americana	
POPDEL	Cottonwood	Populus deltoides	

Tier 2 Invasives

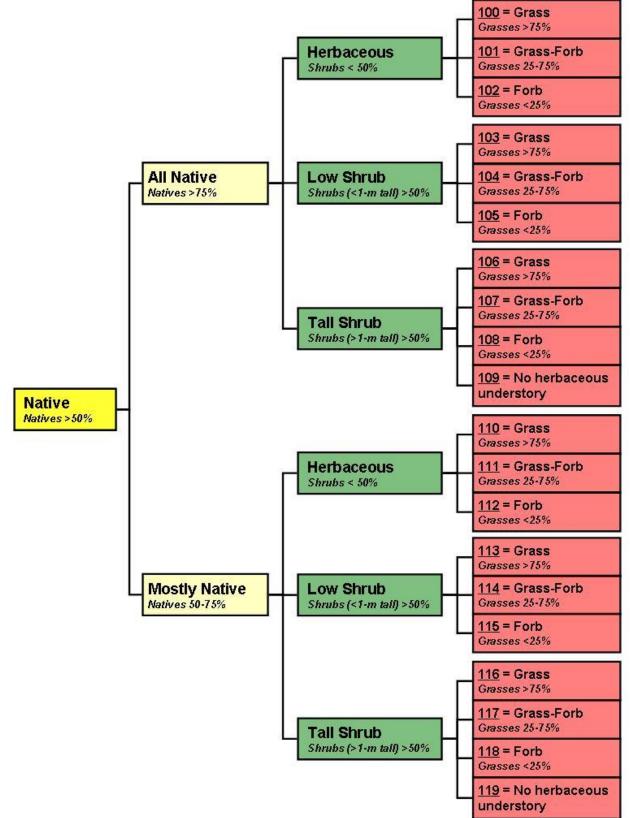
Code	Common Name	Scientific Name	Old Code
DACGLO	Orchard Grass	Dactylis glomerata	
SETASP	Foxtails	Setaria glauca, viridis, faberi	
FESELA	Meadow and Tall Fescues	Festuca pratensis & elatior	
PUCDIS	European Alkali-grass	Puccinellia distans	
CRETEC	Hawk's Beard	Crepis tectorum	
ARCMIN	Burdock	Arctium minus	
XANSTR	Cocklebur	Xanthium strumarium	
GRISQU	Curly-top Gum Weed	Grindelia squarrosa	
MEDLUP	Black Medick	Medicago lupulina	
BERINC	Hoary Alyssum	Berteroa incana	
SISALT	Tumble Mustard	Sisymbrium altissimum	
VERTHA	Common Mullein	Verbascum thapsus	
NEPCAT	Catnip	Nepeta cataria	
POTREC	Sulphur-flowered Cinquefoil	Potentilla recta	
POTARN	Silvery Cinquefoil	Potentilla argentea	
SALTRA	Russian Thistle	Salsola tragus	
KOCSCO	Summer-cypress	Kochia scoparia	
SILCSE	Smooth Catchfly	Silene csereii	
SILVUL	Bladder-campion	Silene vulgaris	
CONARV	Field Bindweed	Convolvulus arvensis	
CALSEP	Hedge Bindweed	Calystegia sepium	
LAPPSP	Stickseeds	Lappula redowski & squarrosa	
AMABLI	Prostrate Pigweed	Amaranthus blitoides	
SINARV	Charlock	Sinapis arvensis	
ERUGAL	Dog-mustard	Erucastrum gallicum	
TAROFF	Dandelion	Taraxacum officinale	
SAPOFF	Bouncing Bet	Saponaria officinalis	
CHERUB	Alkali Blite	Chenopodium rubrum	
RUMACE	Sheep Sorrel	Rumex acetosella	
PERMAC	Lady's Thumb	Persicaria maculosa	POLPER
RUMSPP	Dock	Rumex patientia, crispus, stenophyllus	
PLANSP	Common & American Plantains	Plantago major & rugellii	
CARARB	Siberian Pea-tree	Caragana arborescens	
SALALB	White Willow	Salix alba	
PINSYL	Scotch Pine	Pinus sylvestris	
MORALB	White Mulberry	Morus alba	

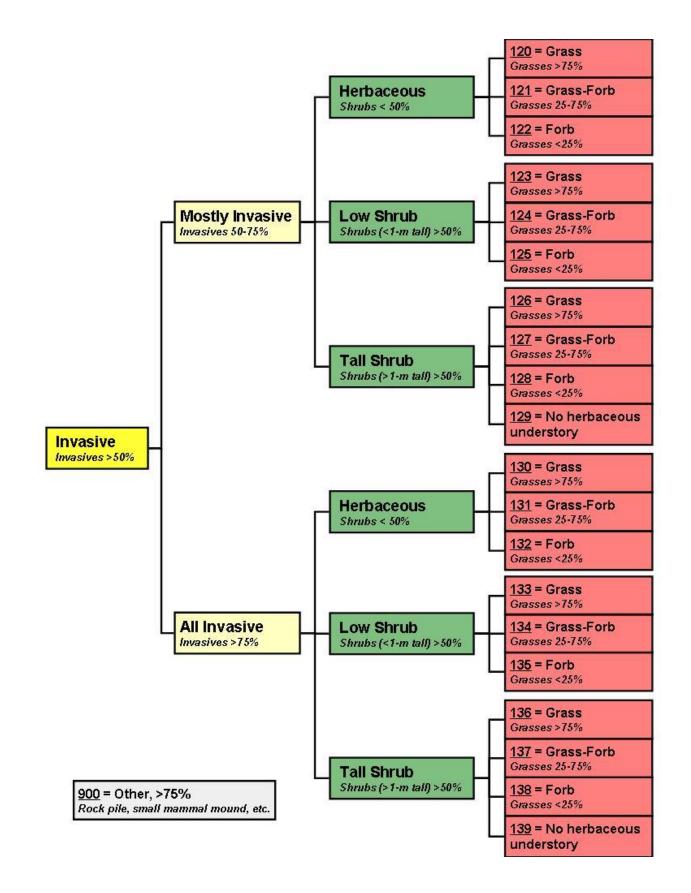
Appendix 6. Native indicator species lists.

The list was developed by Robert Dana and Fred Harris (MCBS, 2008) and includes conservative species that are sensitive to grazing and easily identified

Code	Common Name(s)	Scientific Name	Old Code
AMOCAN	Leadplant	Amorpha canescens	
ECHANG	Narrow-leaved Purple Coneflower	Echinacea angustifolia	ECHPAL
ASTCRA	Ground Plum, Buffalo-bean	Astragalus crassicarpus	
CORPAL	Bird's Foot Coreopsis	Coreopsis palmata	
LIAASP	Rough Blazing Star	Liatris aspera	
LIAPUN	Dotted Blazing Star	Liatris punctata	
SYMSER	Silky Aster	Symphyotrichum sericeum	ASTSER
CALSER	Toothed Evening Primrose	Calylophus serrulatus	
HEURIC	Alum Root	Heuchera richardsonii	
PEDESC	Prairie Turnip	Pediomelum esculentum	
ANEPAT	Pasque Flower	Anemone patens	
POTARGU	Tall Cinquefoil	Potentilla arguta	
PHLPIL	Prairie Phlox	Phlox pilosa	
DALCAN	White Prairie Clover	Dalea candida	
DALPUR	Purple Prairie Clover	Dalea purpurea	
PRERAC	Smooth Rattlesnakeroot	Prenanthes racemosa	
LILPHI	Wood Lily	Lilium philadelphicum	
ZIZAPT	Heart-leaved Alexanders	Zizia aptera	
LIALIG	Northern Plains Blazing Star	Liatris ligulistylis	
ZIGELE	White Camas	Zigadenus elegans	
TRABRA	Bracted Spiderwort	Tradescantia bracteata	
LIAPYC	Great Blazing Star	Liatris pycnostachya	
HELAUT	Sneezeweed	Helenium autumnale	
LYSQUA	Prairie Loosestrife	Lysimachia quadriflora	
ZIZAUR	Golden Alexanders	Zizia aurea	

Tier 2 Natives


Code	Common Name(s)	Scientific Name	Old Code
AMONAN	Fragrant False Indigo	Amorpha nana	
GAIARI	Blanket Flower	Gaillardia aristata	
LIACYL	Few-headed Blazing Star	Liatris cylindracea	
SYMOBL	Aromatic Aster	Symphyotrichum oblongifolium	ASTOBL
SYMOOL	Sky-blue Aster	Symphyotrichum oolentangiense	ASTOOL
GENPUB	Downy Gentian	Gentiana puberulenta	
SOLSPE	Showy Goldenrod	Solidago speciosa	
ASCTUB	Butterfly Weed	Asclepias tuberosa	
SOLPTA	White Aster-like Goldenrod	Solidago ptarmicoides	
ASTADS	Prairie Milk Vetch	Astragalus adsurgens	
DELCAR	Prairie Larkspur	Delphinium carolinianum subsp. virescens	DELVIR
CASSES	Downy Paintbrush	Castilleja sessiliflora	
SYMLAE	Smooth Blue Aster	Symphyotrichum laeve var. laeve	ASTLAE
SILLAC	Compass Plant	Silphium laciniatum	


ASCOVA	Oval-leaved Milkweed	Asclepias ovalifolia	
AGOGLA	Glaucus False Dandelion	Agoseris glauca	
LATVEN	Veiny Pea	Lathyrus venosus	
ASCSPE	Showy Milkweed	Asclepias speciosa	
THADAS	Tall Meadow-rue	Thalictrum dasycarpum	
VERVIR	Culver's Root	Veronicastrum virginicum	
SOLRID	Riddell's Goldenrod	Solidago riddellii	
SYNNOV	New England Aster	Symphyotrichum novae-angliae	ASTNOV
DOEUMB	Flat-topped Aster	Doellingeria umbellata	ASTUMB
PEDLAN	Swamp Lousewort	Pedicularis lanceolata	
LYTALA	Winged Loosestrife	Lythrum alatum	
DICLEI	Leiberg's Panic Grass	Dichanthelium leibergii	PANLEI
MUHCUS	Plains Muhly	Muhlenbergia cuspidata	
CARFIL	Thread-leaved Sedge	Carex filifolia	
SORNUT	Indian Grass	Sorghastrum nutans	
SPOHET	Prairie Dropseed	Sporobolus heterolepis	

Appendix 7. Distubrance increaser indicator species list.

Code	Common name	Scientific Name
ACHMIL	Yarrow	Achillea millefolium
AMBART	Ragweed	Ambrosia artemisiifolia
AMBTRI	Giant Ragweed	Ambrosia trifida
BECSYZ	American Sloughgrass	Beckmannia syzigachne
CONCAN	Horseweed	Conyza canadensis
HORJUB	Foxtail Barley	Hordeum jubatum
IVAXAN	Marsh-elder	Iva xanthifolia
JUNARC	Baltic Rush	Juncus arcticus (balticus)
LEPDEN	Prairie Pepperweed	Lepidium densiflorum
PANCAP	Witchgrass	Panicum capillare
PLAPAT	Wooly Plantain	Plantago patagonica
RANCYM	Seaside Crowfoot	Ranunculus cymbalaria
SCIPAL	Pale Bulrush	Scirpus pallidus

Appendix 8. Plant group list (updated April 2009)

