Multiparty Monitoring and Public Learning

Kerry Metlen, The Nature Conservancy Gwyn Myer, Southern Oregon Forest Restoration Collaborative

Multiparty Monitoring

Compliance

Does it meet the legal requirements?

Implementation

Did we do what we said we would do? Effectiveness

Are we effectively accomplishing our goals/objectives?

Validation

Is there a better way to meet the goals/objectives?

Why Multiparty Monitoring?

Increase trust and accountability

Determine action, program or management effectiveness
Inform adaptive management

Adaptive Management

'Management based on a series of feedback mechanisms in a continual cycle of evaluation, planning, action, and monitoring' (Shindler et al 1999)'

Experimental

Strategic

Arbitrary

Keys to Successful Multiparty Monitoring

1. Identifying and engaging stakeholders

2. Building a common understanding

Defining project and monitoring goals and indicators
 Developing and implementing a monitoring plan

5. Learning from monitoring and assessing project process

An Important Question to Ask

Monitoring faces many challenges/constraints

- Time consuming
- Expensive
- Changing agency priorities

How can NGOs and other groups help partner with agencies to build capacity to be able to monitor?

Increase forest ecosystem resistance and resilience

- Fire behavior
- Stand density
- Tree vigor
- Mean diameter
 - Composition of tree and understory diversity

Increase spatial heterogeneity to benefit biodiversity and species of concern at the stand and landscape scale

- Canopy cover
- Stand level skips and gaps
- Stand level structural complexity
- Seral stage composition at landscape scale
- Snag and down woody material abundance
- Bird species composition

Conserve and improve northern spotted owl habitat through LSEA (late seral emphasis area) design

- Fire behavior adjacent to LSEAs
- Percentage of NRF, dispersal, and unsuitable habitat
- Spotted Owl reproduction and pattern of use

Generate jobs and support regional manufacturing infrastructure

- Jobs created or maintained
- Board feet and ton weight of material harvested
- Market utilization by product category

Gain public support for active management in federal forests

Indicators:

Awareness and support of engaged public Success of community outreach and engagement Scoping and EA comments

Permanent Photo Points

Conditions at one of 20 FIREMON plots established one year prior to any treatments.

- Visual record across multiple phases
- Baseline to identify changes over time
- Tool for public understanding of stand response to active management

Conditions at the same plot immediately following the hand-piling of remaining activity fuels.

This permanent photo point of a cable yarding corridor was established by the Pilot Joe Multiparty Monitoring Team immediately after completion of the 'finish work

Building Capacity, Accountability, and Support

- Sponsored a conference in Oct 2010
- Sponsor field trips
- Worked as citizens on ID teams
- Work on MPM team
- Taken photos/collected data in field to help monitoring efforts
- Work to find funding
- Advocate for agency funding
- Provide agency opportunity (and others) to bring questions to the table
- Got funding- i.e., Title II from RAC
- Create(d) jobs
- Public buy-in

Ashland Forest Resiliency

•7,600 acre project area
•1,700 acres non-commercial thinning
•1,300 acres commercial thinning
•Cooperative project design
•Cooperative implementation
•Multiparty Monitoring

Ashland Forest Resiliency

Protecting nature. Preserving life"

PROJECT FUNDED BY THE American Recovery and Reinvestment Act

ASHLAND FOREST RESILIENCY STEWARDSHIP AGREEMENT

Technical Stakeholders

Developing Monitoring Priorities, June 12, 2009

Monitoring Advisory Committee

- Ellen Goheen USFS, Forest Health Program
- John Alexander Klamath Bird Observatory
- John Gutrich Southern Oregon University

- Mark Shibley Southern Oregon University
- Eric Dinger- National Park Service
- Dan Sarr- monitoring scientist
- Dave Clayton USFS, Rogue-Siskiyou NF

Implementation Review Team

Southern Oregon Forest Restoration Collaborative

Water Quality and Aquatic Habitat

Indicators

residual pool depth
substrate embeddedness
macroinvertebrate communities
water turbidity
sediment accumulation in Reeder

Baseline Macroinvertebrate data

2010	Preferred	Reeder Gulch	East Fork Ashland Creek	West Fork Ashland Creek	Section 20
Richness	>30	28	34	40	26
Abundance	>500	2643	799	473	795
EPT taxa	>30	14	19	23	19
% Dominant	<30	19.6	30.9	22.0	18.4
Intolerant taxa	>15	6	11	15	6
Tolerant taxa	<5	0	0	1	0

2011	Preferred	Reeder Gulch	East Fork Ashland Creek	West Fork Ashland Creek	Section 20
Richness	>30	26	26	45	25
Abundance	>500	546	461	884	326
EPT taxa	>30	19	17	31	15
% Dominant	<30	26.7	39.9	15.4	27.9
Intolerant taxa	>15	11	12	18	9
Tolerant taxa	<5	0	1	0	0

Songbird mist netting and point counts

Indicators Songbird community composition Individual species utilization of specific habitats

Late Successional Habitats

Indicators

Vegetation structures before and after project completion
Population dynamics and habitat use of Northern Spotted Owl, flying squirrels and pacific fisher

Pacific Fisher – Winter 2011

85

Northern Spotted Owls Habitat Use

Apparent occupancy and the reproductive rates of Northern Spotted Owls in the Ashland Watershed, Siskiyou Mountains, southern Oregon 1993-1997, 2005-2008, and 2010-2011: a preliminary report. Katie M. Dugger, Jason W. Schilling, Robert G. Anthony, and L. Steven Andrews.

Large tree retention and survival

Indicators

- cut-tree size distribution
- legacy tree patch identification
- legacy tree vigor response and retention

Predicted Legacy Tree Densities m^{2/}acre High : 1931.2 Low : 0 Predicted Legacy Trees
 ARRA Treatment Footprint
 Roads

AFRSP Legacy Tree Prediction

----- Streams

LIDAR

Aerial Photo

Social Monitoring – Public Learning

Indicators

Survey respondent project support – Mark Shibley
 Survey respondent understanding of forest issues
 Feedback from the Implementation Review Team

Herbaceous Recovery and Response

Indicators

herbaceous cover in Common Stand Exam plots

Building Capacity, Accountability, and Support

ADDISFUT LARVAE

- Clarify objectives
- Monitor compliance, treatment effectiveness, and increase accountability
- Engage public and build trust
- Convene partners and volunteers from diverse stakeholder groups
- Inspire collective action
- Leverage stakeholder expertise to increase agency capacity
- Advocate for agency funding and procure outside funding
- Provide framework for additional questions

Multiparty Monitoring and Public Learning

Kerry Metlen, The Nature Conservancy Gwyn Myer, Southern Oregon Forest Restoration Collaborative