

Fire Effects Monitoring

Jean Lorber Central Appalachians FLN September 11, 2019


What are YOUR goals for this session?

What are YOUR goals for fire?

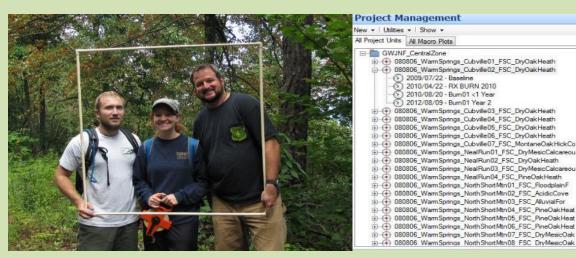
This shapes your monitoring efforts

Monitoring can:

- provide data for future management decisions
- tell the story of what you've done
- be part of the process of long-term resource management
- be flexible, scalable to suit your goals

Fire Effects Monitoring in western VA

(5) 2009/07/22 - Baseline 2010/04/22 - RX BURN 2010 2010/08/20 - Bum01 <1 Year 5 2012/08/09 - Burn01 Year 2

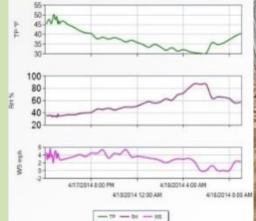

080806_WarmSprings_Cubville04_FSC_DryOakHeath

080806_WarmSprings_NealRun01_FSC_DryMesicCalcareou

080806_WarmSprings_NealRun03_FSC_DryMesicCalcareou 080806_WarmSprings_NealRun04_FSC_PineOakHeath

080806_WarmSprings_NorthShortMtn06_FSC_PineOakHeat 080806_WarmSprings_NorthShortMtn07_FSC_DryMesicOak

080806_WarmSprings_NorthShortMtn01_FSC_FloodplainF 080806_WarmSprings_NorthShortMtn02_FSC_AcidicCove 080806_WarmSprings_NorthShortMtn03_FSC_AlluvialFor 080806_WarmSprings_NorthShortMtn04_FSC_PineOakHeat 080806_WarmSprings_NorthShortMtn05_FSC_PineOakHeat


Forest Structure and Composition

Canopy Gap Analysis

Burn Severity

Fire Behavior & Weather

Avian Community

GW National Forest Plan Objectives

Desired Conditions for Ecological Systems Diversity

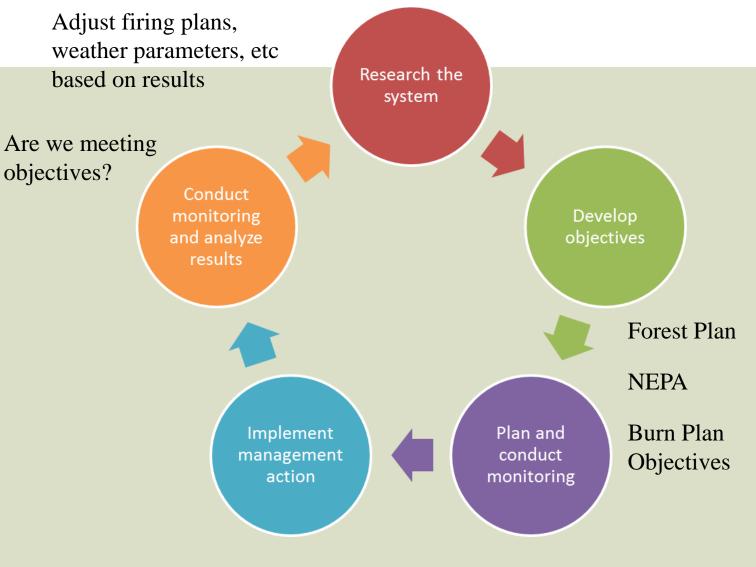
DC ESD-01: Native ecological systems occupy appropriate sites. Native ecosystems sustain strong, resilient populations of associated terrestrial and aquatic species.

DC ESD-02: There is a mix of closed canopy forest, intermittent canopy, and open canopy conditions. Forest and woodland ecological systems support a diversity of tree ages, from regeneration to old growth, providing a relatively stable mix of ecological conditions across the landscape over time. Openings occur in individual treesized gaps and larger. Vegetation structure within patches of regenerating forest and woodland is diverse due to the presence of snags and live overstory trees. These forested systems are dominated by hardwoods, pines, or combinations of both. Non-forested systems are primarily dominated by shrubs, forbs, and grasses. Snags, downed wood, stumps, and other organic matter occur in sufficient abundance to support native species.

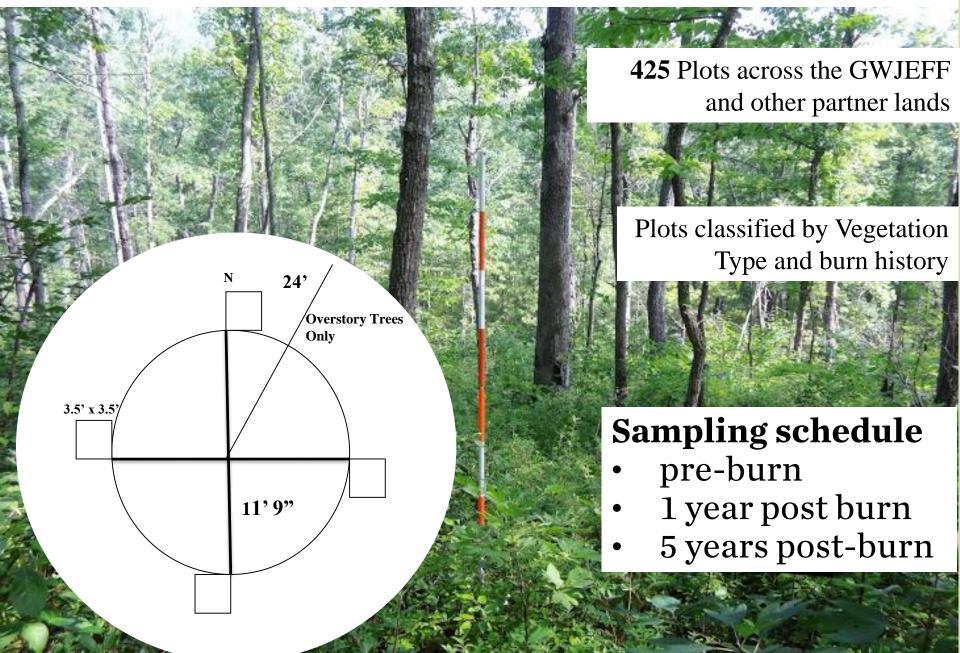
Desired Structural Conditions for Oak Forest and Woodlands					
Structure	Early	Mid- Successional Closed Canopy	Mid- Successional Open Canopy	Late Successional Open Canopy	Late Successional Closed Canopy
% of ecological system	12	7	10	57	14
Age	0-15	16-69	16-69	70+	70+

Desired Stand Conditions

Oak & Hickory Forests and Woodlands



Pine Forests, Woodlands & Savannahs



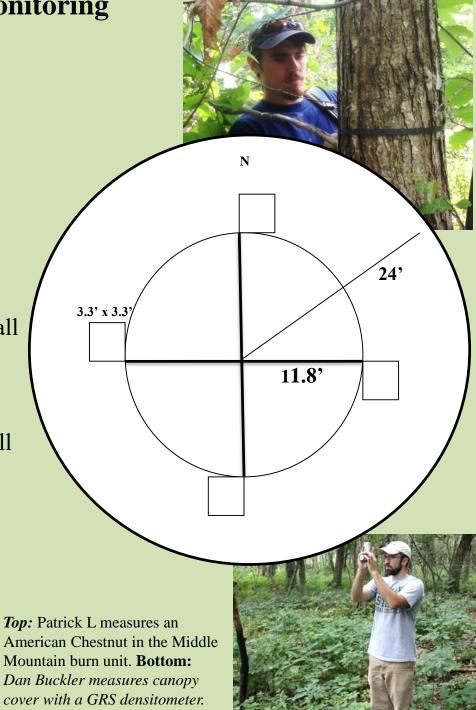
Monitoring & Adaptive Management

Observe & document changes to the landscape over time

Forest Structure and Composition Monitoring Methods and Stats

Forest Structure and Composition Monitoring Methods

Overstory basal area (plot = 24' radius) All trees >4"dbh


Canopy Cover (plot = 11.8' radius) Transects along cardinal directions

Midstory (plot=11.8' radius) woody tree & shrub stems, 1-4" DBH & >3.5' tall

Understory (plot=11.8' radius) woody tree & shrub stems < 1" DBH & >3.5' tall

Regeneration (four 3.3' x 3.3' quadrats) All woody stems 6" to 3.3' in height are tallied.

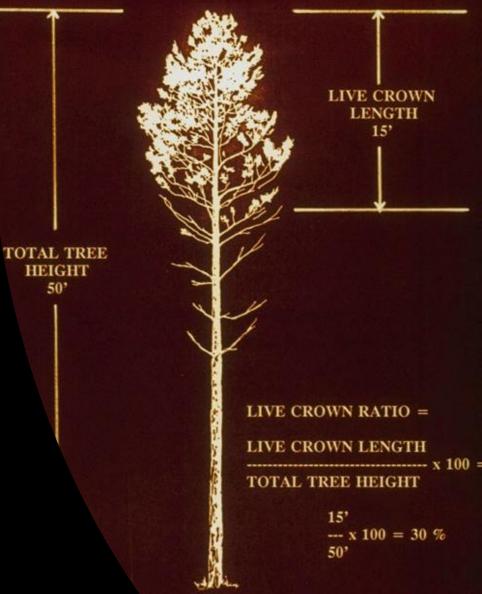
Understory cover (four 3.3' x 3.3' quadrats) percent cover of graminoids, forbs, woody trees/shrubs, woody vines, and non-native invasive species are estimated.

Monitoring results tied to burn objectives

Burn plan objectives	Monitoring result
<i>Reduce overstory canopy in Oak and Pine woodlands by 5-15% each treatment</i>	Overstory reduced by 15%
Decrease the number of <4" DBH of fire intolerant trees in the mid-story by 50% within one year post-burn.	Midstory stem density reduced by 64% • Oaks reduced by 71% • Maples reduced by 71%
Top kill at least 80% of all blueberry and huckleberry plants to encourage sprouting and berry production.	Understory stem density (<i>Vaccinium</i> spp.) increased by 50%

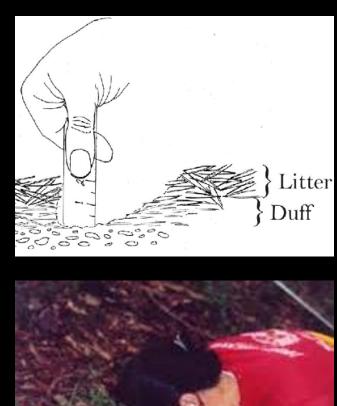
Composite Burn Index

Samples different forest strata, documenting fire's effects


Conducted very soon after burn

Forest health

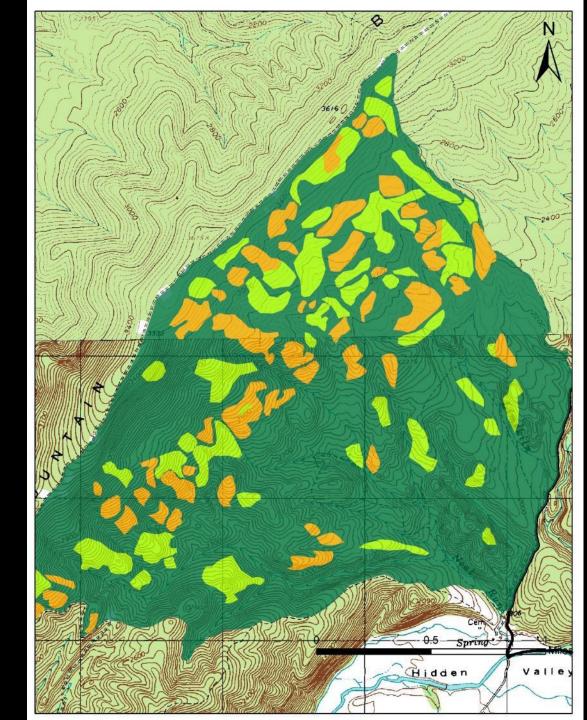
Live Crown Ratio and other measurements can track longterm tree damage/mortality

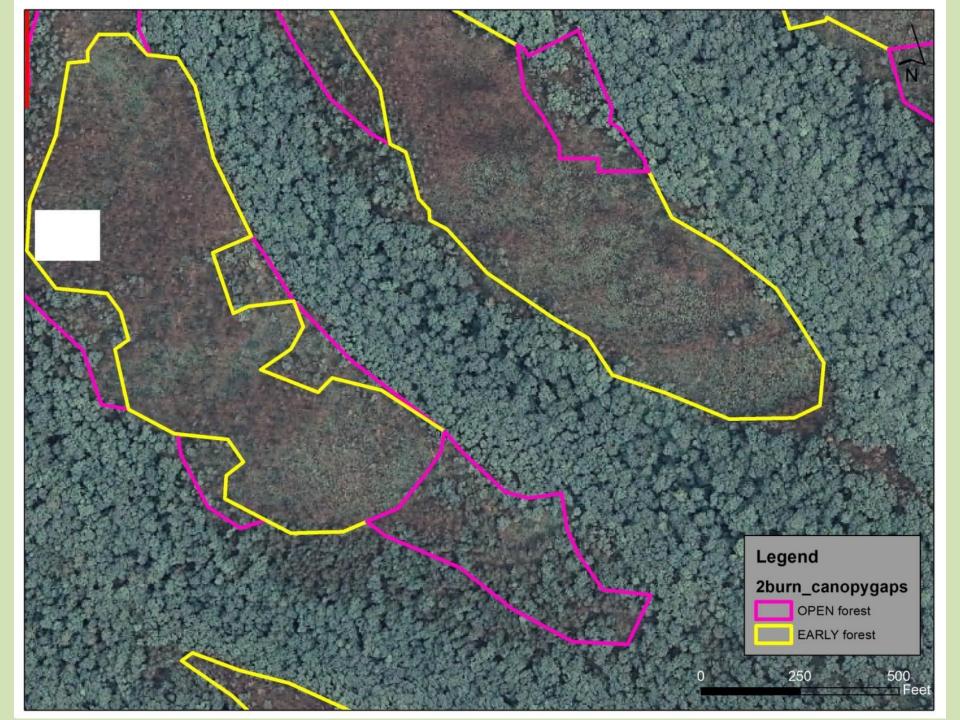


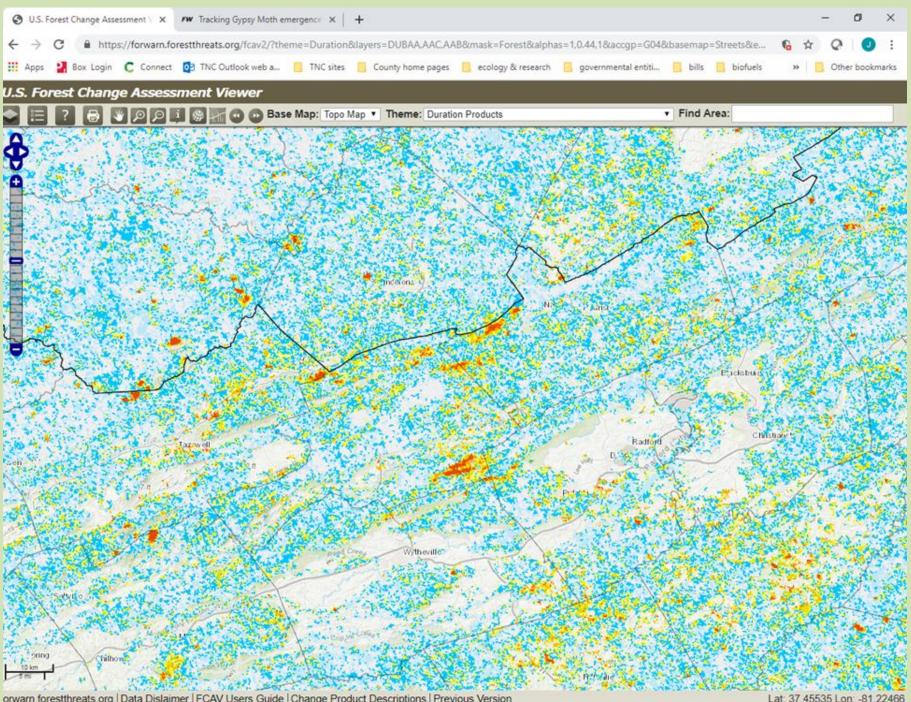
UGA2714078

Litter/duff depth

- Indicator of fire severity
- Indicator for pine seedling establishment success





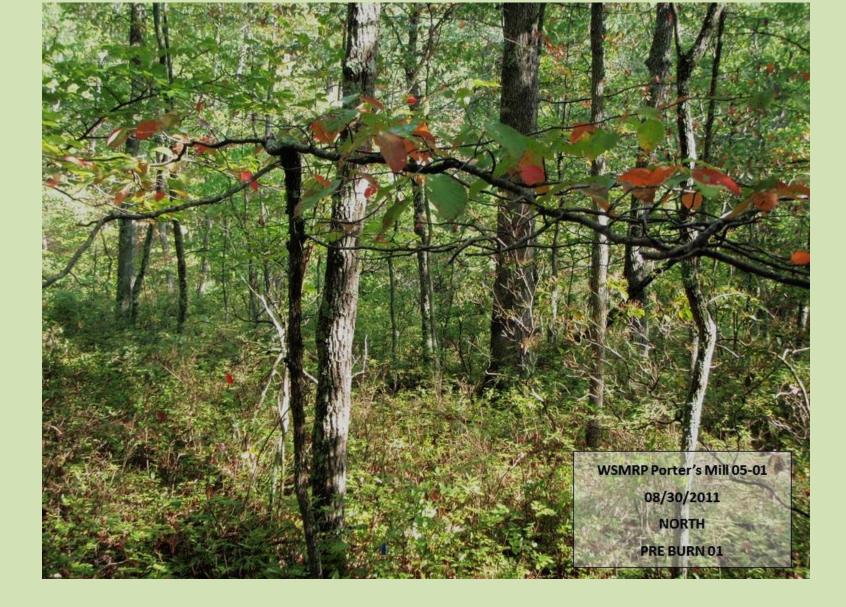

Remote sensing/GIS

 Can detect large-scale changes to forest canopy structure, health

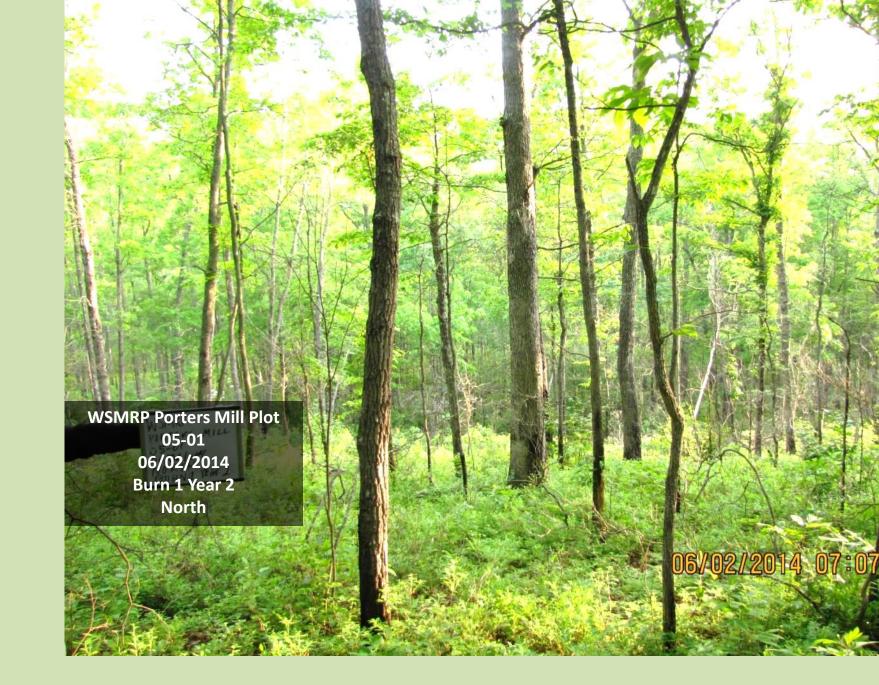
 But blind to some characteristics (understory structure, species composition)

orwarn.forestthreats.org | Data Dislaimer | FCAV Users Guide | Change Product Descriptions | Previous Version

Lat: 37.45535 Lon: -81.22466


Photopoints

 Snapshot of overall condition at that location


 Good for showcasing the long-term development of a forest

WSMRP Porters Mill Plot 05-01 06/15/2012 Two Months Post Wildfire North WSMRP Porters Mill Plot 05-01 08/06/2013 Burn 1 Year 1 North

PORTERS MILL

WSMRP Porters Mill Plot 05-01 05/29/2015 Burn 1 Year 3 North

05/29/2015 11:02

WSMRP Porters Mill Plot 05-01 08/02/2017 Burn 1 Year 5 North

Some of our monitoring results

Overstory Changes: 1 burn

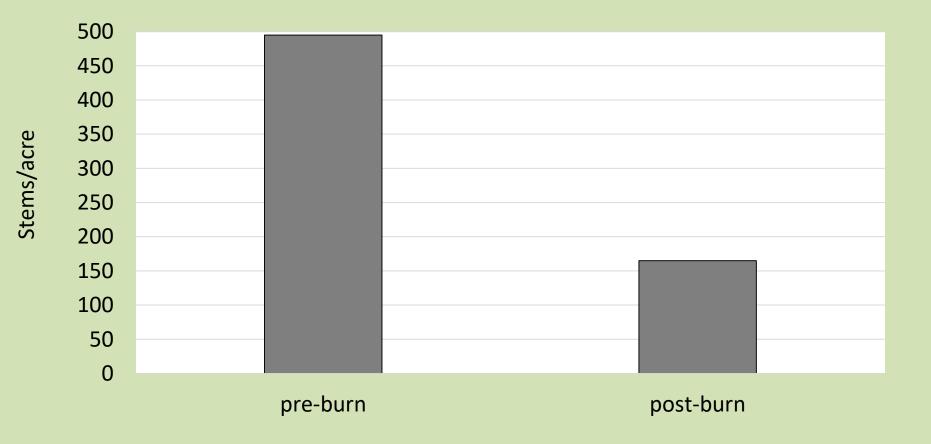
Basal Area	Pre-burn	After 1 Burn
Ft ² /acre	84	71
Canopy Cover	Pre-burn	After 1 Burn
%	85	78

All comparisons are statistically different

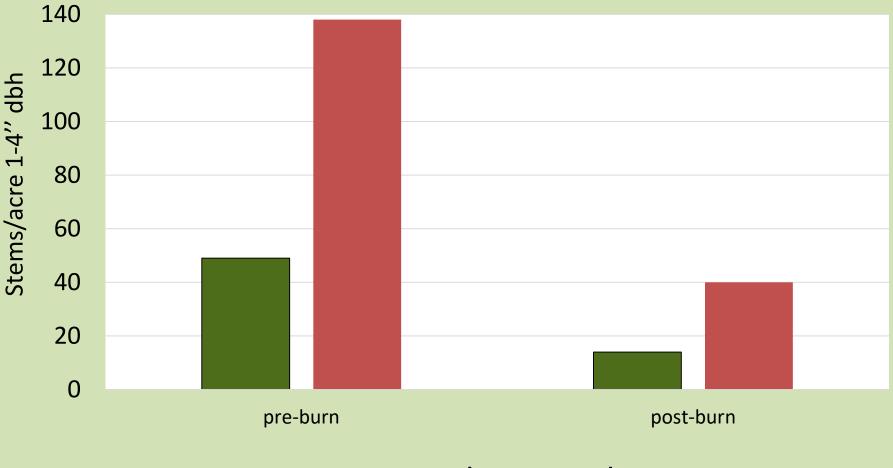
Moderate but consistent decrease in the canopy due to a single burn

Midstory Changes: 1 burn

Live Woody Stems Per Acre 1-4 inch DBH	Pre-burn	After 1 Burn
All Species	467	169
Tree Species	342	126
Shrub Species	125	43


Big Wilson Burn Plot 03-17 Baseline

All comparisons are statistically different


Big Wilson Burn Plot 03-17 Burn 1

Midstory Changes 1burn 1-4"dbh

All species

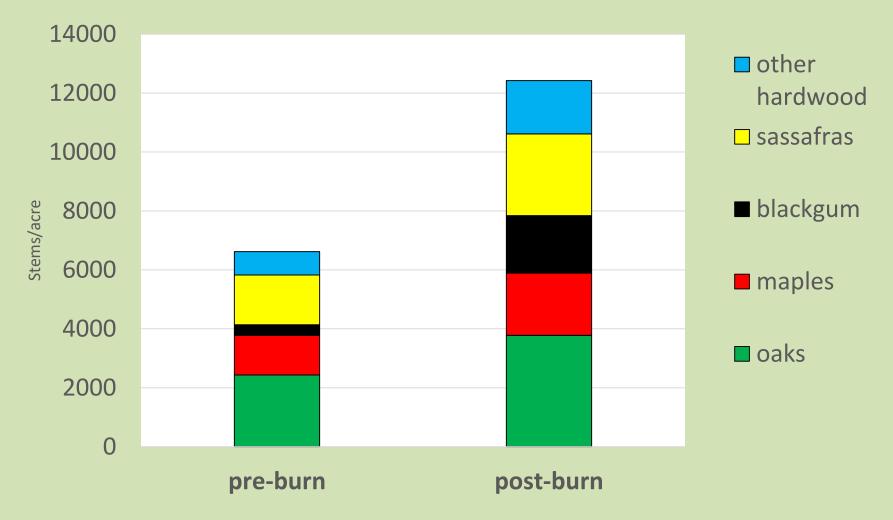
Midstory Changes 1burn

🔳 oak 📕 maple

- Both species groups decline in stem density following a 1st burn
- Wait a few years to see how this layer develops

Understory Changes1 burnstems >6" and <3.3' tall</td>

	Pre-burn	After 1 Burn
	thous	sands
All Species	34	74
Shrub spp.	27	61
Tree spp.	7	13


Berries in Porters Mill Unit

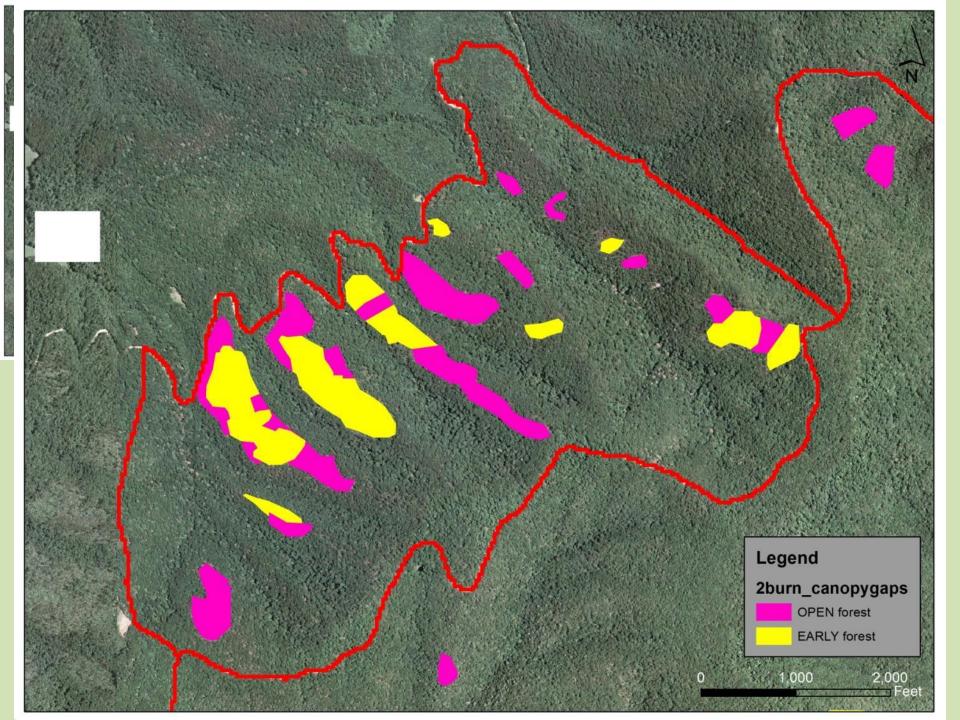
Cubville Plot 03 Burn 1 Year 1 Cubville Plot 03 Burn 1 Year 6

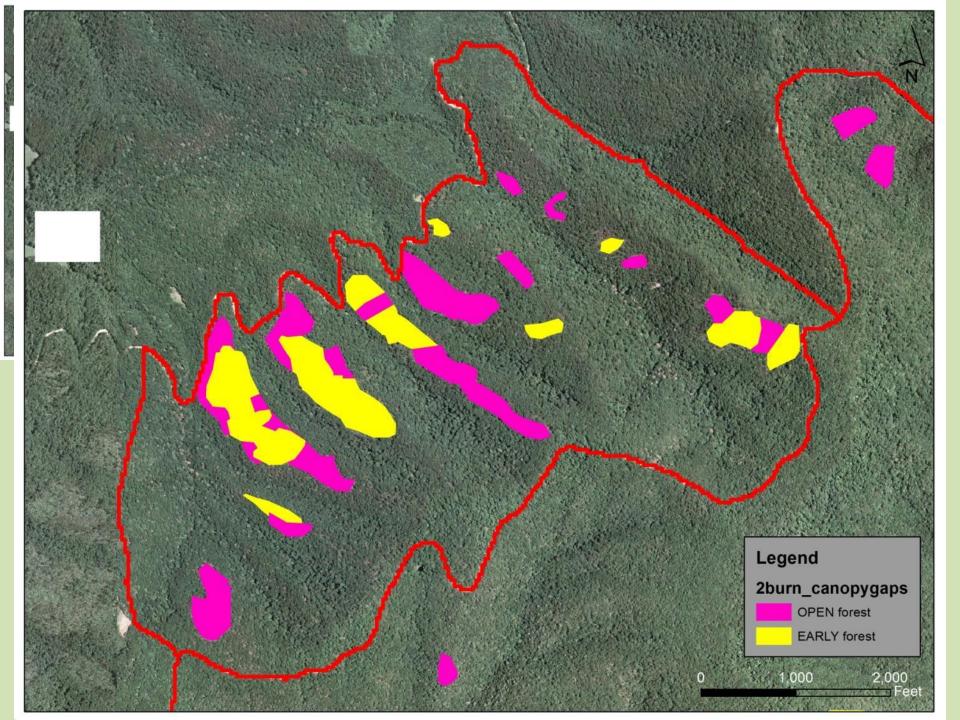
Understory Changes: 1 burn

stems >6" and <3.3' tall, <u>tree species only</u>

Oaks show statistical increase, as do blackgum, sassafras

Understory Changes


Cover	Pre-burn	After 1 Burn
Forbs	4%	8%
Grasses	0.5%	3%



Part 1. Quantify the extent of canopy mortality resulting from prescribed fire

				\cap
	N=28	% OPEN acres	% EARLY acres	% all gaps
1 burn	Average	6.2%	6.5%	13%
	95% C.I.	± 2%	± 3%	± 4%
		LA.		
	N=14	% OPEN acres	% EARLY acres	% all gaps
2 burns	Average	7.9%	6.1%	14%
	95% C.I.	± 3%	± 5%	± 6%
	ALE IN	The sea		
	N=6	% OPEN acres	% EARLY acres	% all gaps
3+ burns	Average	11%	20%	31%
	95% C.I.	± 4%	± 20%	± 21%
191 315	PARA STATI		Maria Carlos	

Other monitoring: Canopy Gap Analysis + FSC plot data

				\sim
Sampling		G	anopy condition	
strata	Attribute	EARLY (n=10)	OPEN (n=10)	CLOSED (n=60)
Overstory	Live basal area (ft²/acre)	18±6a	56 ± 9 b	83±4 c
Ove	Canopy cover (%)	26 ± 8 a	68± 7 b	87±3 c
Mid-story	Live woody stems/acre (1–4 inch d.b.h.)	11 ± 11 ab	0 a	214± 37 b
pory	Live woody stems/acre (<1 inch d.b.h. and >3.3 ft tall)	1,800 ± 392 a	2,180± 630 a	1,136± 243a
Understory	Live woody stems/acre (0.5–3.3 ft tall)	170,758 ± 36,720 a	150,141 ± 35,749 a	47,535 ± 5,787 b
	Nonwoody vegetative cover (%) (<3.3 ft)	7±3a	1 ± 0.3 a	9±3a

Monitoring session notes

Central Appalachians FLN meeting Sept.11, 2019

Participant questions for this session

- 1. Where do we start in designing our monitoring program?
- 2. What questions do we need to ask about our ecological outcomes?
- 3. How do we monitor to capture the effects on wildlife?
- 4. How do we match our monitoring program to our constraints (time, \$)
- 5. How do we prioritize monitoring needs among multiple partners?
- 6. How does monitoring fit into Adaptive Management?
- 7. How do we use less-than-ideal datasets?
- 8. How do we not re-invent the monitoring wheel?

We didn't get to all these topics, but what we did cover is summarized here

To address questions 1 and 2 (and really all the questions) you should first determine:

what do you want your burning to achieve?

- 1. Where do we start in designing our monitoring program?
- 2. What questions do we need to ask about our ecological outcomes?
- 3. How do we monitor to capture the effects on wildlife?

Establish what you want your burning to achieve

Sample goals from participants

Increase browse for specific wildlife species

Promote oak and pine regeneration

Decrease competing regeneration

Increase forest structural diversity

Increase RTE species populations

Increase hard mast for wildlife

Decrease fuel loading

Create a more drought and disease-resistant forest

Do all of the above without impacting timber value

Your monitoring should be tied directly to your goals

Monitoring ideas to address burning goals

Central Appalachians FLN meeting Sept.11, 2019

Goal for burning	Feature(s) to measure	Type of monitoring
Increase browse for specific wildlife species	Understory woody stem density and composition	Plots1/season
Promote oak,pine regeneration	 Overstory species composition Understory oak & pine stem density, by species Understory non-oak & pine stem density, by species Litter/duff layer depth 	Plots1/season
Decrease non-oak & pine regeneration	Same as above	Same as above
Increase forest structural diversity	 Overstory basal area and mortality Overstory/midstory DBH distribution Canopy gap presence/size Light levels Shrub layer density Understory floristic diversity (e.g. grasses, forbs, trees) 	 Plots, remote sensing 1/season Timing for light level sampling restricted by weather
Increase RTE species populations	Occupancy/population of RTE species	 Plots, transects, habitat-specif. surveys Many times/season Timing of species sampling based on species life cycle
Increase soft/hard mast for wildlife	 Overstory hard mast producer density Understory hard mast, soft mast-producer density Hard mast currently on ground 	 Plots, transects 1/season Timing of hard mast sampling limited
Decrease fuel loading	 Snags Downed Woody Debris Litter/duff layer General fuel type 	 Plots, transects (e.g. Brown's) 1/season Timing immed. Post-burn, or next year?
Create a more drought and disease-resistant forest	Understory tree stem density and compositionTree health, especially during drought	Plots, remote sensing1/season
Minimal negative impact on timber value	 Overstory tree damage assessment (scarring, scorch) Overstory mortality Burn severity (Composite Burn Index) 	 Plots, remote sensing 1/season Timing of severity immed. Post-burn Timing of damage sampling should be years after burn

- 1. Where do we start in designing our monitoring program?
- 2. What questions do we need to ask about our ecological outcomes?
- 3. How do we monitor to capture the effects on wildlife?

Summary:

Many different goals for burning were identified

Many goals can be addressed with same types of monitoring...but

some specific questions require unique monitoring (e.g. species life cycle)

Assess whether *direct* or *indirect* impacts to your resource must be measured (i.e. actual population change vs indicator of habitat suitability)

Central Appalachians FLN meeting Sept.11, 2019

Goal for burning	Feature(s) to measure	Type of monitoring
Increase browse for specific wildlife species	Understory woody stem density and composition	Plots1/season
Promote oak,pine regeneration	 Overstory species composition Understory oak & pine stem density, by species Understory non-oak & pine stem density, by species Litter/duff layer depth 	 Plots 1/season
Decrease non-oak & pine regeneration	Same as above	Same as above
Increase forest structural diversity	 Overstory basal area and mortality Overstory/midstory DBH distribution Canopy gap presence/size Light levels Shrub layer density Understory floristic diversity (e.g. grasses, forbs, trees) 	 Plots, remote sensing 1/season Timing for light level sampling restricted by weather
Increase RTE species populations	 Occupancy/population of RTE species 	 Plots, transects, habitat-specif. surveys Many times/season Timing of species sampling based on species life cycle
Increase soft/hard mast for wildlife	 Overstory hard mast producer density Understory hard mast, soft mast-producer density Hard mast currently on ground 	 Plots, transects 1/season Timing of hard mast sampling limited
Decrease fuel loading	 Snags Downed Woody Debris Litter/duff layer General fuel type 	 Plots, transects (e.g. Brown's) 1/season Timing immed. Post- burn, or next year?
Create a more drought and disease-resistant forest	 Understory tree stem density and composition Tree health, especially during drought 	 Plots, remote sensing 1/season
Minimal negative impact on timber value	 Overstory tree damage assessment (scarring, scorch) Overstory mortality Burn severity (Composite Burn Index) 	 Plots, remote sensing 1/season Timing of severity immed. Post-burn Timing of damage sampling should be years after burn

- 4. How do we match our monitoring program to our constraints (time, \$)
- 5. How do we prioritize monitoring needs among multiple partners?
- 6. How does monitoring fit into Adaptive Management?
- 7. How do we use less-than-ideal datasets?
- 8. How do we not re-invent the monitoring wheel?

Did not discuss (but here are some basic thoughts)

- 1. Determine the level of monitoring you need to address identified goals/questions
 - a) Acceptibility of
 - b) Attributes with greater variability require more sampling (count of trees vs count of grass stems)

Central Appalachians FLN meeting

Sept.11, 2019

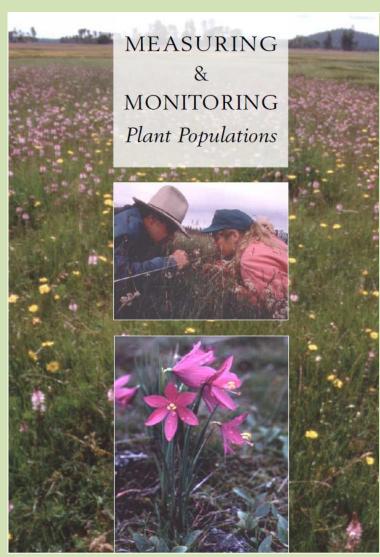
- 2. Refine questions
- 3. Refine accuracy needs

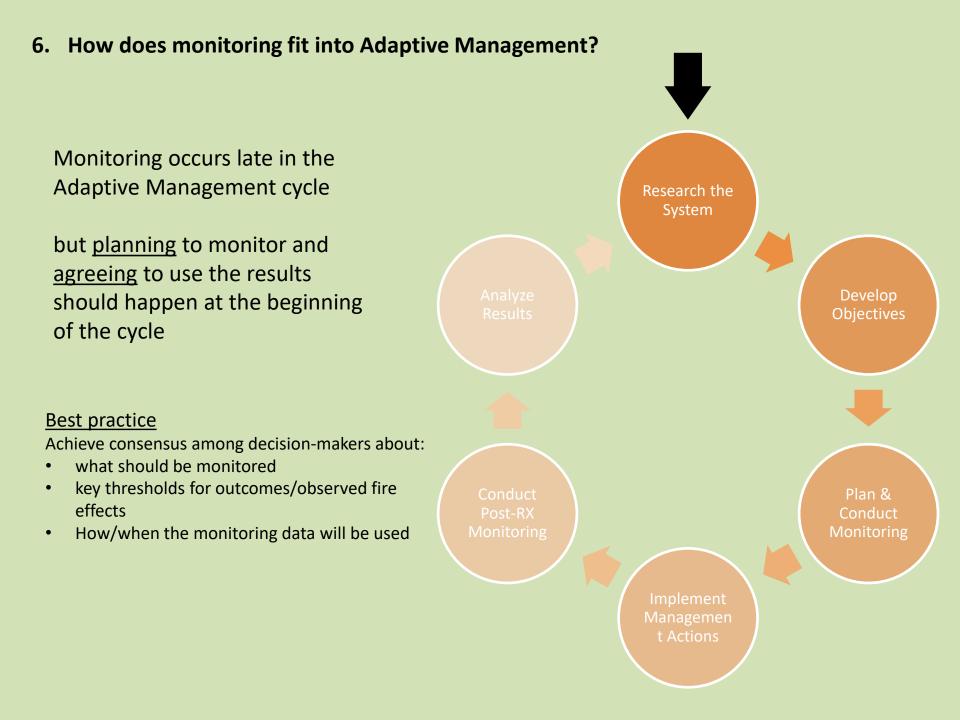
Attributes with greater variability require more sampling (count of trees vs count of grass stems)

Did not discuss (but here's some guidance)

4. How do we match our monitoring program to our constraints (time, \$)

See chapter 3 of Elzinga et al (pages 32-34) for discussion of what criteria can be used when setting priorities


5. How do we prioritize monitoring needs among multiple partners?


See chapter 3 of Elzinga et al for discussion of what criteria can be used when setting priorities

7. How do we use less-than-ideal datasets?

See chapters 7 and 11 of Elzinga et al for discussion of sampling design and statistical analyses

Central Appalachians FLN meeting Sept.11, 2019

How do we not re-invent the monitoring wheel? 8.

Use existing resources: Websites that compile methods, data, reports

https://www.conservationgateway.org/ConservationPra ctices/FireLandscapes/FireLearningNetwork/RegionalNet works/Pages/CentralApps.aspx

Appalachlans (2018)

Shared methods. Smarter conservation. Home Library Subscribe Conservation GATEWAY The Nature Conservation Planning Conservation Practices Conservation By Geography nservation Gateway . Conservation Practices » Fire & Landscapes » Fire Learning Network » Regional Networks » Central Appalachians Fire Central Appalachians Fire Learning Network 💧 Fire & Lan The Central Appalachians FLN engages federal, state and private land managers in a collaborative effort to enhance capacity to implement ecological fire management in NATURE'S the Central Appalachian Forest, Western Allegheny Plateau, and Cumberlands and Southern Ridge and Valley ecoregions. The landscapes include rolling and VALUE mountainous terrain, hardwood and mixed-pine hardwood forests, pine-oak-heath shrublands and woodlands, small-patch grasslands including hillside prairies and cedar glades and high levels of species endemism Within this biologically diverse region, the FLN seeks to: · collaborate with stakeholders to strengthen the scientific basis for landscape-scale fire management, and develop landscape-scale desired future condition and fire management objectives; transfer knowledge and lessons learned to facilitate ecological objective setting. effective stakeholder engagement, efficient compliance with regulatory **Conservation Gateway Puts the** requirements, and funding of ecological fire management projects; and World at Your Fingertips · identify critical barriers to implementing restoration of fire adapted ecosystems and develop strategies to overcome these barriers: ATURE'S VALUES MAP in order to achieve tangible and measurable progress in restoration of fire adapted ecosystems at demonstration sites throughout the network Recent: Annual Central Appalachians FLN workshop October 23-24 Blacksburg, VA Selected publications and products: onitoring protocol & forms: Forest Structure and Cor osition Monitoring in the Heart of the Appalachians (updated 2019) Webinar (recording & publication): Hot Burns, Cold Burns and Everything in Between: Exploring Prescribed Burning's Impacts on Forest Structure in the Appalachians (2019) Webinar (recording & slides): A Decade of Monitoring in the Heart of the

Technical guides for designing a monitoring program

George Washington and Jefferson National Forests NORTH ZONE Fire Effects Monitoring Summary 2015 Heart of the Appalachians Monitoring Working Group

This report summarizes the effects of prescribed burning within the North Zone of the George Washington National Jorrests (GWNF). Both on-the-ground separative sampling (Favier Structures and Comparison-SFG) and Globased Image analysis (Canopy Gap Analysis GGA) were used to characterize fire effects.

Goals and Objectives for Prescribed fire

The GWNF's 2014 Land and Besnurse Management Pian recognizes fire as a crucial tool for achieving multiple gods: "Fire is used in a controlled, wellplanned manner to manage vegetation, restore fire-dependent eccesystems and species, create desired wildlife habitat conditions, and modify uncharacteristic fuel canditions... (pg. 7-24). In detailing the goals for ecception diversity, the Flan goes on to describe a range of desired conditions, specific to each major community (Table 1). Fire is one tool expected to help create these conditions

Almost all of the examined burn units were burned prior to the 2014 Plan, but the goals of those operations were still consistent with the Plan. Below are typical objectives found in post North Zone burn plans:

Overstory: Reduce overstory canopy in Oak and Pine woodlands by 5-15% each

Midstory/Understory: Top kill 50-75% of non-fire-adapted wordy vegetation Over all species composition: encourage a vegetation mosaic that favors fire-

Where appropriate, the results of these analyses are compared to both Plan objectives and burn unit objectives

Data and Analysis—Forest Structure and Composition As of 2015, ninety (90) permanent plots have been established and sampled in the North Zone, using the FSC protocol developed by Central Appalachians FLN partners (Fig.1). Of the 90 plots. S1 captured the effects of a unit's first prescribed burn 40 captured the second burn. 20 captured the finite burn and 20 captured the fourth burn (nome plots covered more than 1 event).

Data from all major community types (dry. dry-mesic mesic) have been combined, due to the small samplexize of the dry and mesic rategories.

It should be noted that most plots remained relatively CLOSED-canopy after a first burn, and therefore these results best represent the post-fire development of CLOSED-canopy forest. However, as seen in the Compy Gap Analysis (next a Literature integer integer integer is seen in the samply dependent of the section, some burn unit arrange has become OPEN cancey or verse LERLY, successional. The vegetation response in these more affected areas is likely to be significantly different than the results reported here. As burning continues, more globs are likely to become EARLY and OPEN, and results specific to see the section of the section are set of the section are set of the section areas and the section areas are set of the section areas and the section areas and the section areas are set of the section areas areas areas areas areas are set of the section areas are cented separately

FLNS

The Nature

lot 5 in the Cub Run burn rescribed hum

Table 1. Descred distribution of structural conditions for OAK Parent and Woodands

class	landscape*	
Early	12%	
	7%	
Mid-OPT N	10%	
	57%	
Late CLOSED	14%	
TOTAL	100%	

DCR

Plant Populations

MEASURING MONITORING

Central Appalachians FLN meeting Sept.11, 2019