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Abstract
Wetland restoration is an important water quality and climate resilience strategy. Wetland restoration rarely considers
tradeoffs at large spatial and temporal scales, which limits capacity to aid decision makers. High resolution data can reveal
hundreds to thousands of possible restoration options across a landscape, but guidance for setting restoration targets at these
scales is limited. This study uses structured decision making (SDM) as a process for evaluating the desirability of numerous
restoration options, with a case study on the Outer Coastal Plain of the Chesapeake Bay watershed, USA. The Nature
Conservancy, in partnership with federal, state, and nonprofit organizations, evaluated a decision to target large-scale
wetland restoration based on two fundamental objectives: improve water quality and enhance climate resilience. A total of
964 potentially restorable alternatives were delineated across the study area. The alternatives were evaluated on seven water
quality and climate resilience criteria. High-priority alternatives were mapped based on multi-criteria ranking methods and
principal component analysis. Sensitivity analysis included varying nutrient load data, implementing multiple ranking
methods with different assumptions, and varying criteria weights. The maps revealed seven distinct regions of restoration
opportunities. Tradeoffs were evaluated to distinguish between desirable and less desirable regions. Results indicated that
three regions were promising choices to initiate landowner engagement and outreach. This study highlights the advantages
of SDM to structure large-scale restoration decisions. In doing so, our work offers a roadmap toward further developing
SDM in future applied restoration contexts.

Keywords Decision making ● Multi-criteria analysis ● Non-monetary valuation ● Spatial analysis ● Water quality

Introduction

Ecological restoration aims to recover natural ecosystem
functions and achieve ecological, social, economic, and
cultural objectives (SER Society for Ecological Restoration
International Science and Policy Working Group, 2004).
Existing ecological theory has significantly enhanced
capacities to understand and study the interactions within

and across a diversity of ecosystems and scales. Principles
and guidelines for ecological restoration aid decision
makers in applying management practices to plan, imple-
ment, monitor, and evaluate restorative activities (Gann
et al., 2019). However, restoration decisions are often not
clarified, especially when they are complex and uncertain
and many people are involved, including restoration prac-
titioners, project managers, strategy leads, and local and
indigenous communities that manage their own territories
(Matzek et al., 2017). Restoration guidance can be
improved by methodological research aimed at structuring a
deliberate decision-making process, especially in contexts
that involve many objectives and tradeoffs.

Limitations in human behavior and judgement can ser-
iously affect the effectiveness of restoration actions and
outcomes (Gregory et al., 2012). An intuitive approach to
decision making implies that decision makers assign value
directly to their options, or alternatives, paying attention to
only one or a few dimensions of the decision context. There
are well-documented issues with this approach, including

* David M. Martin
David.Martin@tnc.org

1 Maryland/DC Chapter, The Nature Conservancy, 425 Barlow
Place, Suite 100, Bethesda, MD 20814, USA

2 Foundation for Food and Agricultural Research, 401 9th Street
NW, Suite 630, Washington, DC, USA

Supplementary information The online version contains
supplementary material available at https://doi.org/10.1007/s00267-
022-01725-5.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1007/s00267-022-01725-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00267-022-01725-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00267-022-01725-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00267-022-01725-5&domain=pdf
http://orcid.org/0000-0002-1514-5734
http://orcid.org/0000-0002-1514-5734
http://orcid.org/0000-0002-1514-5734
http://orcid.org/0000-0002-1514-5734
http://orcid.org/0000-0002-1514-5734
mailto:David.Martin@tnc.org
https://doi.org/10.1007/s00267-022-01725-5
https://doi.org/10.1007/s00267-022-01725-5


many forms of cognitive errors and biases (von Winterfeldt
and Edwards, 1986; Kahneman, 2013), misunderstanding
the value of alternatives (Game et al., 2013), uncertainties in
how the alternatives can achieve the objectives (Fischhoff
and Davis, 2014), and inabilities to handle many-objective
(Bond et al., 2008) and many-alternative situations (Siebert
and Keeney, 2015).

Structured decision making (SDM) is a proactive
approach to better structure a natural resource management
decision and subsequent analysis process (Gregory et al.,
2012). The foundations of SDM are based on well-
established bodies of knowledge and professional prac-
tices, including behavioral decision theory, operations
research, and systems analysis (Parnell et al., 2013). For the
purposes of this article, SDM can be condensed into several
inquiries, including (i) clarifying the decision, (ii) clarifying
the objectives that will inform the decision, (iii) clarifying
the restoration alternatives to choose from, (iv) clarifying
how the alternatives will achieve the stated objectives, and
(v) evaluating tradeoffs among alternatives. Assumptions,
causal models, and decision-relevant preferences that
inform these inquiries will vary depending on the decision
context (Gregory et al., 2012).

Two key features of SDM are problem decomposition
and iteration. Decision analysts work with decision makers
to decompose the value of their decision options into dif-
ferent dimensions, subject the dimensions to separate
examination, and then apply logic to integrate the dimen-
sions and examine tradeoffs (Keeney and Raiffa, 1993;
Gregory et al., 2005). One of the most important con-
tributions to SDM, and one that explicitly targets problem
decomposition, is value-focused thinking (Keeney, 1992).
Value-focused thinking uses values to create and organize
objectives and evaluates the consequences of decision
options in consideration of those objectives. It is believed
that following this process will result in a decision that
is a direct reflection of what decision makers care about.
These logical concepts, in conjunction with targeted facil-
itation and elicitation techniques, operationalizes SDM into
a prescriptive framework (Gregory et al., 2012). Iteration
allows decision makers to rapidly move through the pro-
cess, achieving some general understanding, and coming
back to refine or change previous work as clarifications to
the process.

These features of SDM are beneficial for several reasons.
First, they make decision makers consult their objectives
and preferences seriously so that they can communicate
effectively. Second, decision makers can measure the value
of each alternative on a set of standards, or criteria, in same
or similar ways, and then combine them into an overall
value or “worth” for each alternative. Third, tradeoffs can
be adequately evaluated using quantitative or qualitative
techniques, such as assigning relative weights to the

variation of criteria or openly discussing the differences
among alternatives and their corresponding criteria. These
features have been found to improve decision-making skills
and decision-maker satisfaction in empirical (Arvai and
Gregory, 2003; Hostmann et al., 2005; Siebert et al., 2021)
and reflective analyses (Keeney et al., 1990; Bessette et al.,
2019; Martin 2021).

Literature Review

The application of SDM to environmental management is
relatively new (Gregory et al., 2012). Recent reviews show
growing support for this approach in many different
decision contexts, including spatial analyses (Huang et al.,
2011; Langemeyer et al., 2016; Cegan et al., 2017). Some
recent restoration studies have focused specifically on
developing objectives based on input from interested
parties (Guerrero et al., 2017), developing alternative
restoration scenarios (Singh et al., 2019), developing and
evaluating tradeoffs quantitatively (Failing et al., 2013;
Martin et al., 2018), as well as developing methods that
warrant adaptive management (Lyons et al., 2008; Peter-
son and Duarte, 2020).

This study applies SDM to evaluate and prioritize a
discrete set of wetland restoration alternatives across a large
landscape. This approach is similar to the so-called reserve
design problem, where a minimum set of spatial planning
units are selected from a larger feasible set of options to
meet biodiversity targets, among other objectives (Pressey
et al., 1993). Many studies use mathematical programming
to “design” the number of possible planning units based on
a multi-objective function subject to quantitative factors that
constrain the search for optimal alternatives (e.g., com-
plementarity, irreplaceability; Possingham et al., 2000).
This strictly analytical decision process has been widely
employed across the world but is limited in regard to its
applicability. Some reviews draw attention to the lack of
non-quantitative and context-specific factors included in
many decision situations, the lack of co-designed planning
products that explicitly and transparently reveal decision
maker assumptions, and possible confusion about whether
data and outputs are used in the final decision-making
process (Knight et al., 2006; Knight and Cowling, 2007;
Tani and Parnell, 2013).

We take a more deliberative and hands-on approach to
assist decision makers in the search for restoration planning
units where constraints and tradeoffs are respectively applied
and evaluated directly by decision makers. Our approach
more closely resembles spatial opportunity mapping in that
we aim to understand the many factors that may lead to
action and incorporate them into the selection of areas where
action is suitable for implementation (Knight et al., 2010).
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By doing this, resources may be allocated for targeted out-
reach to facilitate wetland restoration in these areas. Many
studies have used opportunity mapping to identify high-
priority planning units (e.g., Nelson et al., 2009; Jellinek,
2016), but applied studies using SDM are needed to
demonstrate broad applicability and relevance toward
effectively clarifying assumptions and preferences and pro-
moting user input in a spatial planning process.

Case Study

The Chesapeake Bay is the largest estuary in the United
States, and its watershed has some of the highest rates of
coastal population growth and sea-level rise (Bilkovic et al.,
2019). The watershed covers over 165,000 km2 and seven
jurisdictions: Delaware, Maryland, New York, Pennsylva-
nia, Virginia, West Virginia, and District of Columbia. Like
many other coastal systems around the world, the estuary
faces serious water quality challenges threatening fisheries,
aquaculture, and recreational economies. Eutrophication has
been driven by human-induced nitrogen, phosphorus, and
sediment runoff, contributing to algal blooms and hypoxia
in the estuary and its tidal tributaries (Kemp et al., 2005).
The jurisdictions are currently under a 2010–2025 mandate
to reduce nutrient and sediment and restore water quality
standards for dissolved oxygen, chlorophyll a, water clarity,
and underwater grasses (USEPA, 2010). Agricultural land
uses comprise 19% of the watershed and contributes 48% of
the nitrogen to the estuary, making it an area of focus for
research and implementation (Kleinman et al., 2019). The
challenge to meet the mandate is complicated by the
impacts of climate change including increased frequency of
heavy rain events and intervening drought periods, leading
to the need for greater water storage capacity and assisted
habitat and species migration (Trenberth, 2011).

A team at The Nature Conservancy—a global con-
servation organization—implemented a decision analysis,
including facilitation support from the lead author, spatial
analysis and methodological support by the co-authors, and
decision-making support from a multi-agency partnership
between The Nature Conservancy and U.S. Department of
Agriculture Natural Resources Conservation Service, U.S.
Fish and Wildlife Service, Maryland Department of Nat-
ural Resources, and Ducks Unlimited. The partnership
developed a decision statement that guided the research:
Where is the greatest opportunity for large-scale wetland
restoration in the study area? The decision statement is
purposefully broad and may require several layers of
important decisions at different scales of analysis. The
study area was the Delaware and Eastern Shore of Mary-
land portions of the Chesapeake Bay watershed (Fig. 1)
because of its high concentration of agricultural land uses

and high levels of wetland densities (Cheng et al., 2020)
and losses (Tiner and Finn, 1986).

The decision context presented in this study included
seeking potentially restorable areas that were greater than
300 acres in size and with opportunity to improve water
quality and climate resiliency. Wetlands play a critical role
in mitigating water quality impairments and human- and
climate-induced weather events, leading to enhanced bio-
diversity and human well-being (Mitsch and Gosselink,
2000; Brander et al., 2006). Wetland restoration that is
downgradient of agricultural lands provides a natural filter
for nutrients and sediment and thus represents an important
strategy to improve water quality (Woltemade, 2000; Han-
sen et al., 2018; Jordan et al., 2003; O’Green et al., 2010).
Restored wetlands also reduce risks from drought or
flooding by increasing terrestrial water storage (Arkema
et al., 2013). However, not all wetlands provide the same
functions, and meeting Chesapeake Bay goals require a
targeted approach to identify which locations can provide
the greatest and most reliable opportunities.

This research focused on biophysical targeting of pos-
sible wetland restoration and rehabilitation in agricultural
landscapes where there are opportunities to restore marginal
cropland and improve the function of degraded wetlands in
forests. Our focus assumes that resource allocation effi-
ciencies are in landscape-scale restoration. Site-scale studies
or restoration-specific analyses tend to be extremely vari-
able (Jordan et al., 1997), and the partnership wanted to
screen large contiguous areas where wetland restoration can
remove as much pollution as possible, so that landowner
engagement and outreach can be more targeted.

In the remaining sections, we outline and describe an
SDM process. Objectives and criteria for evaluating pos-
sible wetland restoration options were identified through
elicitation and facilitation. Large-scale restoration alter-
natives were identified through spatial analysis. Multi-
criteria ranking methods and principal component analysis
modeled the strength-of-preference value of the alter-
natives. High-priority alternatives were identified and fur-
ther screened for tradeoffs across the landscape.

Methods

Objectives and Criteria

Objectives form the basis from which possible decision
alternatives can be identified and compared. In many con-
sultations between the authors and partnership members,
two objectives were identified to improve water quality and
climate resilience in the study area (Table 1). The water
quality objective was further clarified with sub-objectives
regarding nutrient load inputs, agricultural sources, and
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Fig. 1 Potential wetland restoration alternatives on Delaware and
Eastern Shore of Maryland portions of the Chesapeake Bay watershed.
The alternatives are polygons that meet several screening criteria for a

potentially restorable area, including contiguous areas of natural and
agricultural land use, size, and predicted water table depth (Supple-
mentary material)
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wetland function, whereas the climate resilience objective
was further clarified into sub-objectives regarding water
storage capacity and species movement.

It is important to note here the nuances of using value-
focused thinking to facilitate conversations from knowl-
edgeable participants. Answers to general questions like
“what are you aiming to achieve” are often unclear and
messy. Two facilitation techniques were used to elicit the
objectives and sub-objectives. First, it is often the case
that decision makers have a hard time separating means
from ends and need some procedural aid in converging on
the fundamental objectives to guide the decision (Bond
et al. 2008). In this study, we asked questions like “why is
that important” to converge on the water quality and cli-
mate resilience objectives. Second, objectives can have
multiple meanings in different decision contexts, and they
often need to be specified to be clearer and more trans-
parent about what needs to be achieved, so that causal
factors and alternatives can directly contribute to desired
changes (Keeney, 2007). The water quality and climate
resilience objectives were viewed as a model of multiple
decision-maker values (Keeney and von Winterfeldt,
2007), and we asked questions like “what do you mean by
that” or “what aspects of that objective are important” to
clarify the sub-objectives.

Seven criteria were developed as performance measures
for the sub-objectives. This study was constrained by the
information that could be gathered at the scale of analysis.
Criteria selection was informed by deliberative facilitation
techniques that included asking unexpected hypothetical
questions to challenge thinking. Questions like “if all else
were equal, would you choose one of two options based on
differences in this measure” helped to elucidate possible

criteria measures, as well as reviews of published reports,
input from the partnership, and spatial data from regional
organizations.

Decision maker preferences for evaluating the decision
were to prioritize restoration alternatives with the highest
criteria values, assuming that these amounts provided the
best opportunity or value to achieve the objectives through
restoration (Table 1, column 4). This approach to defining
objectives and meaningful criteria is different than identi-
fying all possible causal factors or complex ecological
relationships between causal factors. Rather, this approach
was implemented to distinguish the desirability of decision
options as conveyed by decision makers. A brief overview
of the criteria is provided in this section with more detailed
information in the Supplementary material.

Total nitrogen (TN) and total phosphorus (TP) refer to
the modeled amounts of nutrient loads entering a poten-
tially restorable alternative from contributing land use
sources. To measure these criteria, a watershed was deli-
neated for each potentially restorable alternative using the
Batch Watershed Delineation for Polygons program from
the Esri Arc Hydro toolkit (ArcMap 10.6). Within each of
the delineated watersheds, a land use analysis was per-
formed using the Chesapeake Conservancy’s 1-meter High
Resolution Land Use Dataset (www.chesapeakeconserva
ncy.org), enhanced with additional areas of cropland from
the United States Department of Agriculture Cropland Data
Layer. The area of three land use sectors—agriculture,
developed, and natural—were calculated within each deli-
neated watershed. These values were used as inputs for the
loading rate calculations.

Loading rate estimates can be highly variable and depend
on model assumptions. Two different TN and TP loading

Table 1 Objectives and criteria for evaluating wetland restoration alternatives

Objective Sub-
objective

Criterion
(measure)

Preferred
direction

Reference

Water
quality

Nutrient
load inputs

Total nitrogen (kilograms/yr) Increase Chesapeake Assessment Scenario Tool

Total phosphorus (kilograms/yr) Increase Chesapeake Assessment Scenario Tool

Agricultural
sources

Proportion of contributing land use area
(percent)

Increase Chesapeake Conservancy, 2013/2014 High-Resolution Land
Use and U.S. Department of Agriculture 2019 Cropland
Data Layer

Wetland
function

Proportion of ecoydrologically active area
(percent)

Increase The Nature Conservancy

Presence/absence of floodplain Yes/No Flood Emergency Management Agency, 100-Year Effective
Floodplain

Climate
resilience

Water
storage
capacity

Proportion of hydrologic soil groups with
high storage potential and residence time
(percent)

Increase Natural Resources Conservation Service (SSURGO)

Species
movement

Proportion rated “above average” climate
flow (percent)

Increase Anderson et al. (2016)

See Supplementary material for more information on each criterion
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rates for each land use sector were gathered from the
Chesapeake Scenario Assessment Tool web portal (https://
cast.chesapeakebay.net/). The loading rate estimates are
based on different model scenarios, assuming existing or
future nutrient-removing practices across the Chesapeake
Bay watershed. The 2019 Progress scenario, hereafter
2019 scenario, assumed loading rates based on practices
that are currently implemented across the watershed through
2019. The Phase III Watershed Implementation Plan sce-
nario, hereafter 2025 scenario, projected loading rates based
on future implementation of practices across the watershed
through 2025. The six different loading rates, three for each
land use sector per scenario, were then multiplied by the
acres of each land use sector found in each watershed per
alternative and converted to kilograms per year. This pro-
cess resulted in two sets of TN and TP values per alternative
and were used to understand how sensitive the results were
to differences in loading inputs.

Targeting restoration in places with the opportunity to
filter nutrients from agricultural areas was important to
decision makers. The area of three land use sectors, as
calculated above, were used to calculate a proportion of
agricultural land use (AG) criterion. AG was calculated
as the percent of total land use in the contributing
watershed per alternative. Agricultural lands are the
dominant managed land use in the region and were used
to prioritize alternatives with anthropogenic sources of
nutrients rather than from natural sources, such as forest
and wetlands.

Ecohydrologically active areas (EHA) are areas across
the landscape where there is the potential for interaction
between the plant rooting zone and the groundwater table,
and thus where wetland biogeochemical processes are more
likely to occur and influence water quality through effects
on nutrient dynamics. The only required model input is
high-resolution, hydrologically-enforced topography data
(LiDAR-derived). EHA were mapped using the hydrology
toolbox, using a script that drew on widely available tools
across geospatial software packages to analyze these data.
Stream networks were derived using the single-flow direc-
tion (D8) algorithm in ArcGIS Pro and applied to 1-meter
resolution topography data. Relative elevations were cal-
culated as a grid by attributing each pixel with the elevation
of the nearest surface water feature located along a down-
stream flowpath, and then subtracting that elevation from
the focus cell value. EHA were measured as land areas
within 0.5-meter elevation of the nearest down-gradient
surface water feature, per alternative (Murphy et al., 2008;
Jencso et al., 2009).

Floodplains (FP) have a high retention rate for nitro-
gen and phosphorus pollutants (Gordon et al., 2020). The
presence or absence of the Federal Emergency Manage-
ment Agency’s effective 100-year floodplain was

identified inside each alternative. This criterion’s binary
feature was primarily important in the search for desirable
alternatives.

Wetlands can safeguard against climate-induced vul-
nerabilities such as variations in precipitation and sur-
face water runoff (Pörtner et al., 2022). We estimated
water storage capacity (WS) based on hydrologic soil
groups, which are characterized by storage potential and
residence time. Dual class hydrologic soil groups clas-
sified as A/D are sandy and have high storage potential
but low residence time. Groups classified as B/D are
loamy and have good storage potential and moderate
residence time. Groups classified as C/D are fine textured
and have low total storage potential but high residence
time. This criterion mapped and calculated the propor-
tion of land that was designated hydrologic soil classi-
fications A/D, B/D, and C/D per alternative, using the
SSURGO database, as suggested by the state soil sci-
entist at the Natural Resources Conservation Service for
Maryland and Delaware.

The climate flow (CF) criterion measures direction and
intensity of plant and animal movement or “flow” patterns
across the region in response to climate change (Anderson
et al., 2016). Areas of high climate flow have less resistance
to species movement, more natural cover, and are weighted
toward important climate gradients. Climate flow was cal-
culated using a landscape permeability model based on
anthropogenic resistance and climate gradient factors
(Anderson et al., 2016). This criterion mapped and calcu-
lated the proportion of land that was designated “above
average” climate flow per alternative.

Restoration Alternatives

Under a value-focused thinking approach to SDM, deci-
sion alternatives are typically developed as a response to
objectives and criteria (Gregory et al., 2012). We took a
hybrid approach in this study and developed the alter-
natives slightly independently of the objectives and cri-
teria because the alternatives had to be based in part on
spatial information that could be gathered at the scale of
analysis. For this reason, spatial analysis was used to
delineate 964 potential restoration alternatives (Fig. 1).
The team extracted and mapped agricultural land use
(excluding productive agriculture on prime farmland
soils) and natural land cover (including upland and wet-
land habitat, excluding tidal wetlands) across the analysis
area, primarily using the Chesapeake Conservancy’s
1-meter High Resolution Land Use Dataset. Potential
wetland restoration alternatives consisted of contiguous
landscape patches of the mapped agricultural land use and
natural land cover that were at least 121 hectares
(300 acres) in size and contained at least 61 hectares
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(150 acres) of ecohydrologically active area (as calculated
to develop that criterion; see above). See the Supple-
mentary material for a stepwise procedure for delineating
the alternatives in ArcGIS Pro.

Multi-criteria Ranking

The spatial analysis resulted in criteria measures for the 964
alternatives (Tables S1, S2). This is a very large multi-
variate dataset that requires some evaluation and sensitivity
analysis to distinguish desirable from undesirable options in
a prioritization or ranking sense.

Multi-criteria ranking methods model decision maker
preferences and value judgements to infer a rank ordering
of alternatives. Two ranking methods were implemented to
account for sensitivity in aggregating criteria: a compen-
satory value function based on multi-attribute value theory
(Dyer and Sarin 1979) and a non-compensatory distance
function based on compromise programming (Zeleny
1974). Compensation refers to whether good criteria
compensate for poor criteria when they are aggregated
(Martin and Mazzotta 2018). Each method involved two
modeling assumptions. First, criteria measures were
transformed to a common strength-of-preference scale
while maintaining their differentiation across the alter-
natives, so that they could be combined. Second, weights
were assigned to the criteria, so that the scaled values could
be aggregated across the criteria into a single expected
value per alternative.

A value function represents the value of a single alter-
native on the set of criteria. The functional form of the value
function takes each criterion measure zij and transforms it to
between 0 and 1 using a scaling function xij (e.g., linear):

xij ¼
zij � z�j
z��j � z�j

ð1Þ

for all criteria j, alternatives i; where z�j and z��j are the
“worst” and “best” values for each criterion across
alternatives, respectively. In this case, higher values are
more desirable than lower values. We used the value
function Vi to aggregate the scaled criteria into an overall
value per alternative i:

Vi ¼
X7

j¼1

wjxij ð2Þ

where wj are weights that sum to one.
A distance function represents the distance between a

single alternative and an ideal but non-feasible alternative in
geometric space. The functional form of a distance function
takes each criterion measure zij and transforms it to between

0 and 1 using a scaling function xij (e.g., linear):

xij ¼
z��j � zij
z��j � z�j

ð3Þ

for all criteria j, alternatives i; where z�j and z��j are the
“worst” and “best” values for each criterion across
alternatives, respectively. In this case, lower values are
more desirable than higher values because decision makers
seek to minimize the distance between each criterion
measure and its ideal or maximum measure. We used the
distance function Di to aggregate the scaled criteria
measures into an overall distance per alternative i:

Di ¼
X7

j¼1

wp
j x

p
ij ð4Þ

where wj are weights that sum to one; p is a distance or Lp
norm in geometric space. Distance norm values of 1 ≤ p ≤ ∞
weight deviations from the best value higher with greater
distance, which controls the level of compensation (Euclidean
distance is commonly used, where p = 2).

We considered both linear and non-linear scaling
functions based in part on the frequencies of criteria
measures across the alternatives (Figs. S1, S2). Risk neu-
trality implies that the strength-of-preference scale is linear
as in Eqs. (1) and (2), risk aversion implies that the scale is
concave, and risk proneness implies that the scale is con-
vex. These scales can be approximated using elicitation
procedures that may include direct probability judgements
based on relevant beliefs in a proposition (e.g., fre-
quencies, logical analysis, expert opinion), or indirect
judgments based on hypothetical gambles with fixed or
varying probabilities (von Winterfeldt and Edwards,
1986). We reviewed the frequencies and determined that
less frequent and very large criteria measures for criteria
TN, TP, and CF were less important and should not
dominate the overall desirability of the alternatives. This
risk-averse attitude means that preferences were marginally
decreasing for less-frequent and very large criteria mea-
sures. Therefore, a 0-1 non-linear risk-averse scale was
assigned to those criteria using their cumulative density
functions, or the probabilities that an observed value was
less than or equal to a criterion measure. The shapes of the
cumulative density functions of criteria TN, TP, and CF
were largely concave, corresponding to risk aversion
(Figs. S3, S4). These scaled values were used as input into
Eqs. (2) and (3) for the value and distance functions,
respectively. For the remaining criteria AG, EHA, FP, and
WS, we assumed a linear risk-neutral scaling function and
implemented Eqs. (1) and (3) for the value and distance
functions, respectively.
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Weights are parameters in the value and distance func-
tions that measure the contribution of each single-criterion
value to the expected value per alternative (Dyer and Sarin,
1979). There are many ways to elicit criteria weights
depending on the preference scales used in the elicitation,
such as ordinal, interval, and ratio scales (von Winterfeldt
and Edwards, 1986; Danielson and Ekenberg, 2016).
Recent research has revealed potential decision-maker
confusion when eliciting weights in a hierarchical sense
with objectives and criteria (Bessette et al. 2019; Martin,
2021). For this reason and based on decision maker pre-
ferences, sensitivity analysis included water quality and
climate resilience weighting scenarios to emphasize both
objectives. For each weighting scenario, a higher proportion
of weight was given to an objective in seven sensitivity
iterations, between 60 and 90% in increments of 5%. To
illustrate, one iteration of the water quality weighting sce-
nario assigned a weight of 60% to the five water quality
criteria (each apportioned weight was 0.6/5= 0.12). The
remaining 40% was then apportioned between the two cli-
mate resilience criteria (each apportioned weight was 0.4/
2= 0.2). Seven sensitivity iterations were performed per
weighting scenario per ranking method.

Principal Component Analysis

We previously implemented principal component analysis
to understand the underlying structure of the criteria and
alternatives (Martin et al., 2022; general steps are in the
Supplementary material). The functional form of a prin-
cipal component Zni takes each criterion measure Zij and
transforms it to between −1 and 1 using a linear scaling
function xij:

xij ¼ zij � zj
sj

ð5Þ

for all criteria j, alternatives i; where zj is criterion mean and
sj is its standard deviation. The first principal component Z1i
aggregates the scaled criteria values into an overall value,
sometimes referred to as a Z-score, per alternative i:

Z1i ¼
Xl

n¼1

vn1xij ð6Þ

where coefficients vn1 are elements of the eigenvector
associated with the dominant eigenvalue λ1 from covariance
matrix A (Supplementary material).

That analysis spread the alternatives onto a plane of
maximum variation in TN, which represented 99% of the
variation in the data set. The linear combination of principal
eigenvalues and standardized criteria (Z1-scores) were
consistent with inherent tradeoffs between criteria EHA,

WS, CF, and sometimes AG, and criteria TN and TP
(Martin et al., 2022). These tradeoffs were associated with a
specific preference structure for the nutrient loading criteria,
without requiring the more difficult task of assessing
strength-of-preference values or weights using ranking
methods (Martin et al., 2022). Decision makers were willing
to consider this assumption, and we organized the alter-
natives in accordance with the lowest Z1-scores associated
with the principal component (Supplementary Material
from Martin et al., 2022).

Mapping and Tradeoffs

Maps were developed to visualize and prioritize alter-
natives based on the ranking methods and principal
component analysis. Decision makers desired many
options for engagement and outreach specialists to con-
sider across the landscape, and iteration and best profes-
sional judgment resulted in the assumption to map at least
10% of the 964 potentially restorable wetlands. We
selected the top 100 ranked alternatives per weighting
scenario, as averaged by their value and distance func-
tions over seven sensitivity iterations. Alternatives con-
sidered to be water quality priorities included the non-
overlapping alternatives that ranked in the top 100 under
the water quality weighting scenario as well as the 100
alternatives with the lowest Z1-scores. Alternatives con-
sidered to be climate resilience priorities included the
non-overlapping alternatives that ranked in the top 100
under the climate resilience weighting scenario. Alter-
natives considered to be highest priority included the
overlapping alternatives that ranked in the top 100 under
all weighting scenarios. Alternatives that fell into these
three categories were mapped. Two maps were developed
corresponding to the different nutrient loading data sce-
narios (see above). We annotated the maps to identify
clusters of planning units of potentially restorable areas to
perform targeted outreach. Tradeoffs among the hand-
picked units, hereafter referred to as regions, were eval-
uated using consequence tables.

Results

The methods applied in this study identified many water
quality and climate resilience priorities in the study area.
These priorities were informed by a deliberative and itera-
tive SDM process that focused on spatial data inputs, pre-
ferences and judgments, and sensitivity analysis. Unless
otherwise noted, we present results from implementing the
methods using data from the 2025 nutrient loading scenario
because there was no significant variation in the results
based on the different loading inputs.
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Priority alternatives

The ranking and mapping effort resulted in several hundred
priority alternatives out of a total of 964 alternatives iden-
tified across the study area. According to initial results using
the 2025 nutrient loading scenario, 106 alternatives were
identified as water quality priorities, 76 alternatives were
identified as climate resilience priorities, and 40 alternatives
were identified as priorities under both objectives. These
results are consistent with the 2019 scenario, with the
exception of slightly fewer climate resilience priorities
identified, slightly more water quality priorities identified,
and slightly more priorities identified under both objectives.

After initial reviews of the results, we annotated the map
by assigning three additional constraints based on organiz-
ing tasks and leveraging partnership investments in putting
restoration on the ground. First, decision makers wanted to
consider the potential connectivity and added benefit of
restoration between priority alternatives across the land-
scape. Therefore, alternatives adjacent to a priority alter-
native were mapped. Second, they wanted to exclude
alternatives below an elevation of two feet relative to mean
sea level, as these areas are currently undergoing conversion
to tidal wetlands with sea level rise and ineligible for
enrollment in many conservation easement programs. Third
and based on the previous two constraints, we identified
regions of priority alternatives for further planning and
analysis. These assumptions resulted in a final list of 184
priority alternatives in seven regions under the 2025 sce-
nario (Fig. 2) and 180 alternatives in the same seven regions
under the 2019 scenario (Fig. S5), not accounting for
priority alternatives outside of the regions or adjacent
alternatives inside of the regions.

Tradeoffs

Tradeoffs were evaluated to distinguish the desirability of
the regions for targeted landowner outreach. The average
criteria measures of priority alternatives inside each region
were used to construct consequence tables (Gregory et al.,
2012) regarding potential water quality, climate resilience,
and overall value (value in terms of average criteria mea-
sures) in each region (Fig. 3). Overall value regarded
priority alternatives for water quality, climate resilience,
and both water quality and climate resilience. A two-step
process simplified the consequence tables. First, the aver-
age measures were color-coded based on their placement in
the upper 20%, middle 60%, and lower 20%, while con-
sidering that preferences were linear for some criteria (AG,
EHA, WS) and nonlinear for others (TN, TP, CF). This
step placed a value judgment on the ranges of average
criteria measures and allowed elimination of potentially
irrelevant criteria whose values were similar across the

regions. Second, the dominance concept was used to
evaluate the regions based on their color-coded values.
Dominance refers to elimination of less desirable regions
that are worse than others on at least one criterion and the
same as or worse on the remaining criteria. Regions that
are not worse or better over the criteria, as evaluated by
their color-coded placement, are non-dominated and
therefore worthy of further consideration because they
trade off value between criteria. In other words, regions
identified as dominated were outperformed by other
regions over all criteria, regions identified as non-
dominated traded off value on some but not all criteria
and are therefore desirable, and regions that dominated all
other regions are the most desirable.

According to overall value, Region 7 dominated
Regions 1, 2, 3, 4, 5, and 6 (Fig. 3A). To illustrate, Region
7 dominated Regions 1 and 2 because it was equally as
valuable over criteria TN, TP, AG, and EHA and higher in
value over criteria WS and CF. In fact, the EHA criterion
was considered to be irrelevant because its value was
similar across all regions. Though this criterion was an
important attribute of water quality, we found no sig-
nificant differences among any of the regions for that cri-
terion (Fig. 3A), and therefore it was not helpful in
distinguishing the desirability among the regions. Like-
wise, Region 7 dominated Regions 3, 4, 5, and 6 because it
was equally as valuable for some criteria but higher in
value for the others. To summarize, there were no instances
where Region 7 was worse in value as compared to another
region and some instances where Region 7 was better in
value in comparisons to another region, as evaluated by
their color-coded placement.

We considered other instances of dominance. For
example, Region 3 dominated Regions 1 and 2 because it
was equally as valuable over criteria TN, TP, AG, EHA,
and CF and higher in value over criterion WS. Region 5
dominated Region 6 according to this logic as well. In
summary, Region 7 was identified as a desirable option,
and Regions 1, 2, and 5 were less desirable options in the
analysis of overall value.

According to water quality value, Region 7 dominated
Regions 1, 2, 3, 4, 5, and 6, and criteria TN and EHA were
found to be irrelevant (Fig. 3B). Regions 1, 2, 3, and 5 were
all similar regarding both water quality and climate resi-
lience value. These regions dominated Region 4 (lower AG
value) but traded off value in comparison to Region 6
(higher WS value but lower TP value). In summary, Region
7 was a desirable option and Region 4 was a less desirable
option in the analysis of water quality value.

According to climate resilience value, Region 3 domi-
nated Regions 4, 5, 6, and 7, and criteria WS and CF were
found to be irrelevant (Fig. 3C; there were no priority
alternatives for climate resilience in Regions 1 and 2).
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Fig. 2 Priority alternatives across the study area under 2025 Scenario
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Fig. 3 Consequences table for tradeoff analysis. Consequence table
revealing tradeoffs among regions and their priority alternatives
regarding A overall criteria measures (both water quality and climate

resilience priority alternatives), B water quality values, and C climate
resilience values. Regions 1 and 2 did not contain any priority alter-
natives for climate resilience and were therefore not analyzed in (C)
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Regions 4, 5, 6, and 7 were non-dominated because
they all traded off value in certain criteria. In summary,
Region 3 was a desirable option in the analysis of climate
resilience value.

Discussion

This study used SDM to evaluate a decision of where to target
landowner engagement and increase wetland restoration
across a large landscape based on water quality and climate
resilience interests. The analysis introduced clarity and rigor
based on its ability to break down the decision into related
parts: specifying value-focused objectives and criteria, spe-
cifying potentially restorable wetland alternatives, and inte-
grating preferences and analytical methods to evaluate the
alternatives on the set of criteria.

After careful deliberation, which included some of the
above iterations based on viewing preliminary results, the
multi-agency partnership made a decision to perform initial
outreach and engagement in Regions 3, 5, and 7 across the
study area. Although Region 5 did not dominate all others
on an objective, it was not dominated outright over both
objectives and there were many high-priority alternatives
for both objectives (Fig. 2). An additional insight discussed
among the partnership was that Region 5 is currently an
area of active engagement, which made it a promising
option to better target that engagement. These insights did
not have as much to do with the tradeoff analysis as it did
with a broader view of the mapping effort. The partnership
was reassured in this decision as the analysis recorded
assumptions in a clear and easy-to-communicate process,
which guarded against implicit biases (von Winterfeldt and
Edwards, 1986), emphasized a value-focused approach to
facilitation and gathering (spatial) data and other relevant
information (Keeney, 1992), and incorporated variation and
uncertainty in the values, data, and preferences used in it
(Gregory et al., 2012). In summary, SDM reduced the
likelihood that personal or organizational biases influenced
the deliberations.

The decision has informed further targeted outreach and
engagement decisions. The regions that were decided have
been divided among the partnership agencies to initiate
feasibility studies, including outreach and behavioral
research to analyze landowner interest in wetland restora-
tion on their properties. A sub-team of the partnership is
currently focusing on developing a working knowledge of
individual landowner views, knowledge about, and interest
in pursuing wetland restoration on their properties. They are
implementing behavior change interventions (Richenback
et al., 2017) to initiate engagement and discuss landowner
eligibility for restoration programs in each priority region.
As mentioned earlier, outreach specialists are currently

working in Region 3 and actively responding to farmer and
farm landowners interest in restoration opportunities.

This study has focused primarily on revealing a set of
assumptions expressed through an organizational decision
process. It is important to note the nuances in carrying out
this type of process and how different assumptions could
lead to different outcomes. The easiest illustration to this
effect is that different interests matter to different people. As
mentioned earlier, the mapping and tradeoff exercises led to
different insights among the partnership. Likewise, we
recognize that a different set of objectives and criteria may
be identified by other decision-making groups to clarify
what matters in a large-scale restoration planning decision.
Other interests could be valuable for selecting restoration
opportunities in other contexts, such as social benefits
(Martin et al., 2018) or carbon sequestration (Villa and
Bernal, 2018). We emphasize the importance of decision
makers and decision-making groups, including interest
groups and other potential project partners, actively parti-
cipating in the analysis and making assumptions explicit.
This can be developed in the presence or absence of a
designated decision facilitator, but we think the facilitator is
a critically important link between decision makers and
available information. Facilitators must make use of best
elicitation practices and techniques, including but not lim-
ited to ones that deliver value-focused information (Keeney,
1992), and they should consider navigating the process in a
way that does not inject their own biases or contribute to the
content of the discussion (Phillips and Phillips, 1993).

Additionally, the assumptions are subject to further
research to better understand conditions across the study
area. For example, abilities to estimate the water storage
criterion may improve beyond the soils data used at the time
of the analysis. Future iterations on the decision can reveal
other methods to evaluate water storage more accurately,
such as estimating volume of potential water storage per
alternative. These data were not available at the scale of the
decision considered. Likewise, other data and uncertainties
that were not part of the study as presented could change the
analysis. SDM, however, is indifferent to varying data and
assumptions, which makes the approach robust to different
environmental management contexts.

Structured decision making cannot guarantee that all
important factors are included in the analysis. Rather, it
aims to concentrate thinking on the more difficult aspects of
a decision. To illustrate, ranking methods can streamline the
process of evaluating numerous options on many objec-
tives. Ranking methods can utilize simple or rigorous
approaches as needed, and there are advantages and dis-
advantages to each approach (Martin and Mazzotta 2018;
Martin, 2021). SDM aims to elicit relevant input from
decision makers in a meaningful manner, so that partici-
pants’ assumptions and modeling results can be discussed
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openly and honestly. Similarly, SDM allows decision
makers to provide a consistent rationale about tradeoffs.
The case study used a consequence table and tradeoff rules
to simplify that process, but other tools and assumptions
could be useful in other situations (Bower et al., 2018). The
key takeaway is that gathering and presenting information
in a structured and transparent manner can go a long way
toward improving decision makers’ trust in the analysis
(Arvai and Gregory, 2003). These and other features can
benefit restoration planning even when there are conflicts
between ecological and social costs and benefits (Gann
et al., 2019). Revealing and reflecting on these assumptions
could be an emphasized in future wetland restoration
research moving forward.

Conclusions

The SDM process presented in this article used methods
that were logically consistent with decision-maker pre-
ferences. In practice, they incited thoughtful, open, and
reasonable deliberation among decision makers. This
approach can yield better results than intuition-driven
decision-making approaches (Arvai et al., 2001;
McDaniels, 2019), but we recognize that any decision
may or may not lead to good outcomes. On the contrary,
SDM can improve peoples’ ability to think strategically in
complex situations, which is a critical building block to
achieving better outcomes. In general, the methods
applied enhanced a shared understanding and satisfaction
with what the partnership was trying to achieve. The
analysis supported many forms of learning, in particular:
(i) what values and objectives were important determi-
nants to the decision; (ii) technical aspects of the ecolo-
gical systems and how they related to decision-relevant
objectives; and (iii) improved transparency and relation-
ships building within the planning team and with partners.
These conclusions are reflective because no structured
survey or experiment was included to evaluate SDM, but
this is an area of future research.
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