

Where and when are high severity fires more likely to occur?

LANDFIRE Webinar | December 9, 2020

Greg Dillon USDA Forest Service, Rocky Mountain Research Station, Fire Modeling Institute Missoula, Montana

Development of a Severe Fire Potential Map for the Contiguous United States

Gregory K. Dillon, Matthew H. Panunto, Brett Davis, Penelope Morgan, Donovan S. Birch, William M. Jolly

Fire, Fuel, Smoke Science Program Rocky Mountain Research Station

Home	Se
FIRESEV - Modeling and mapping fire severity	Principal Investigator(s)
FIRESEV (FIRE SEVerity Mapping Tools) is a comprehensive set of tools and protocols to deliver, create, and evaluate fire severity maps for all phases of fire management. It can be used to create real-time fire severity maps on its own or along with current satellite imagery products to enhance data analysis of fire effects. The set of tools and protocols for FIRESEV includes: 1) a Severe Fire Potential Map based on statistical modeling with satellite-derived observations of severity from past fires, 2) a mapping algorithm that integrates simulation modeling into the Wildland Fire Assessment Tool, 3) research papers, and 4) other helpful information to improve descriptions, interpretations, and mapping of fire severity.	Contact(s): Keane, Robert (Bob) Research Staff: Dillon, Greg Sikkink, Pamela Karau, Eva Elanary Sarah

FIRESEV Home FIRESEV East Contacts

Documentation Return to FRAMES

FIRESEV Home

The Fire Severity Mapping System project (FIRESEV) is geared toward providing fire managers across the western United States critical information about the potential ecological effects of wildland fire at multiple levels of thematic, spatial, and temporal detail. A major component of FIRESEV is a comprehensive map of the western U.S. depicting the potential for fires to burn with high severity if they should occur. Developed as a 30m-resolution raster dataset, the map is intended to be an online resource that managers can download and use to evaluate the potential ecological effects associated with new and potential fire events. See the FIRESEV documentation page for more information and publications about the FIRESEV Severe Fire Potential map.

While the full extent of the FIRESEV Severe Fire Potential map covers all lands in the western United States, statistical modeling and mapping work was conducted separately for forested and nonforested settings in each of the 17 mapping regions shown below.

https://www.frames.gov/firesev/home

Forest

Service

Rocky Mountain **Research Station**

General Technical Report RMRS-GTR-415

August 2020

Why focus on high severity?

Geophysical Research Letters

Research Letter 🔂 Free Access

Warmer and Drier Fire Seasons Contribute to Increases in Area Burned at High Severity in Western US Forests From 1985 to 2017

S. A. Parks X, J. T. Abatzoglou

Western US

VPD_{max} z-score

0.83 个 0.79 个

0.74

0.80

0.73

0.69

-1 0 1 VPD z-score

N

N

0 -1 VPD

N

Why focus on high severity?

Geophysical Research Letters LETTER • OPEN ACCESS Research Letter 🔒 Free Access Warmer and Drier Fire Seasons Contribute to Increases in Area Burned at High Severity in Western US Forests From 1985 to 2017 S. A. Parks 🔀, J. T. Abatzoglou Wildfire-Driven Forest Conversion in Western North American Landscapes 👌 Jonathan D Coop, Sean A Parks, Camille S Stevens-Rumann, Shelley D Crausbay, Philip E Higuera, Matthew D Hurteau, Alan Tepley, Ellen Whitman, Timothy Assal, Brandon M Collins, Kimberley T Davis, Solomon Dobrowski, Donald A Falk, Paula J Fornwalt, Peter Z Fulé, Brian J Harvey, Van R Kane, Caitlin E Littlefield, Ellis Q Margolis, Malcolm North, Marc-André Parisien, Susan Prichard, Kyle C Rodman

BioScience, Volume 70, Issue 8, August 2020, Pages 659-673,

https://doi.org/10.1093/biosci/biaa061

Published: 01 July 2020

SCIENCE

4 Million Acres Have Burned In California. Why That's The Wrong Number To Focus On

October 7, 2020 - 4:06 PM ET Heard on All Things Considered Fire-catalyzed vegetation shifts in ponderosa pine and Douglas-fir forests of the western United States

Kimberley T Davis¹ (D), Philip E Higuera¹ (D), Solomon Z Dobrowski², Sean A Parks³ (D), John T Abatzoglou⁴ (D), Monica T Rother⁵ and Thomas T Veblen⁶ Published 13 October 2020 • © 2020 The Author(s). Published by IOP Publishing Ltd <u>Environmental Research Letters</u>, <u>Volume 15</u>, <u>Number 10</u>

Size Isn't the Best Way to Talk About Fires

by Crystal Kolden October 22, 2020

BAYNATURE

Objectives

- Develop a comprehensive map of the potential for high burn severity for all areas in the contiguous United States using empirical observations and statistical modeling
- 2. Evaluate the quality of the map to provide managers with guidance on its interpretation and use
- 3. Contribute to our understanding of what factors drive the occurrence and patterns of high burn severity

Study Areas

Study Areas

Forest and Nonforest

Current Conditions

 LANDFIRE Existing Vegetation Cover (EVC)

Prefire

- LANDFIRE Environmental Site Potential (ESP)
- Landsat Time Series
 Stacks Vegetation
 Change Tracker
- LANDFIRE EVC

Phase 1 Acquire and Process Data for Modeling

MTBS

MONITORING TRENDS IN BURN SEVERITY (MTBS) IS A MULTIAGENCY PROGRAM DESIGNED TO CONSISTENTLY MAP THE BURN SEVERITY AND PERIMETERS OF FIRES ACROSS ALL LANDS OF THE UNITED STATES FROM 1984 AND BEYOND.

LEARN MORE

MTBS

MONITORING TRENDS IN BURN SEVERITY (MTBS) IS A MULTIAGENCY PROGRAM DESIGNED TO CONSISTENTLY MAP THE BURN SEVERITY AND PERIMETERS OF FIRES ACROSS ALL LANDS OF THE UNITED STATES FROM 1984 AND BEYOND.

Satellite-derived severity metrics

- West RdNBR
- East dNBR and prefire NBR

> 12,000 fires

> 3600 field plots

Firesev CBI plots: https://doi.org/10.2737/RDS-2013-0017 | Compiled CBI plots for CONUS: https://doi.org/10.5066/P91BH1BZ

Phase 1 Acquire and Process Data for Modeling

21

22

23

24

25

0

18

19

20

Convert to binary severity

- West High
- East High + Moderate

Draw a 1% sample of burned pixels

• > 2 million sample points

Methods		Burn Severity Data	Topographic Data	Vegetation Data	Fuel Moisture Data
Phase 1 Acquire and Process Data for Modeling	Acquire	West: RdNBR ¹ from MTBS ² for 1984 to 2007 East: dNBR ³ or NBR ⁴ from MTBS for 2000 to 2013 CONUS: Field CBI ⁵ Data	CONUS: National Elevation Dataset (NED) 3 arc second (~30m) Digital Elevation Model (DEM). Acquired in 2009 (West) and 2014 (East)	West: pre-fire Landsat scenes from MTBS East: pre-fire MODIS ⁷ NDVI ⁸ images	CONUS: Daily 4-km gridded weather data for 1980 to 2010 (West) and 1980 to 2013 (East)
Raster spatial data "stack" of predictor and response variables for burned areas	Process	West: Calculate thresholds to classify severity from statistical relationship between RdNBR and CBI. East: Calculate thresholds to classify severity from statistical distribution of MTBS thematic classifications.	West: Calculate potential solar radiation with SOLPET6 ⁶ model East: Calculate relative potential solar radiation with ArcGIS Area Solar Radiation tool CONUS: Calculate 11 topographic indices from NED DEM	West: Calculate NDVI from 30m Landsat scenes East: Select pre-fire 250m MODIS NDVI with highest quality	CONUS: Calculate sea-level potential temperature and subsequently 1000-hour fuel moisture for every grid cell, every day in the time series. Calculate the lowest site- specific fuel moisture percentile for each fire in the study, within a 10-day window of each fire's start date .
	Data Product	 West: 30m binary severity raster for burned areas. Classified to high severity vs. other. East: 30m binary severity raster for burned areas. Classified to high or moderate ("higher") severity vs. other. 	 West: 6 30m solar radiation rasters for all lands. East: 1 30m solar radiation raster for all lands. CONUS: Elevation and 11 30m topographic index rasters for all lands. 	West: 30m pre-fire NDVI raster for burned areas. East: 250m pre-fire NDVI raster for burned areas.	CONUS: Database of minimum 1000-hour fuel moisture percentiles at the time of each fire in the study.

¹ RdNBR = Relative Differenced Normalized Burn Ratio, ² MTBS = Monitoring Trends in Burn Severity, ³ dNBR = Differenced Normalized Burn Ratio, ⁴ NBR = Normalized Burn Ratio, ⁵ CBI = Composite Burn Index, ⁶ SOLPET6 = Flint and Childs (1987) solar radiation model, ⁷ MODIS = Moderate Resolution Imaging Spectroradiometer, ⁸ NDVI = Normalized Differenced Vegetation Index

Phase 1 Acquire and Process Data for Modeling Raster spatial data "stack" of predictor and response variables for burned areas Database of pixel samples with values for predictor and response variables

Response Variable

Binary severity

WEST: More Severe = High Severity EAST: More Severe = Moderate & High Severity

Predictor Variables

- Topography
 - 30m elevation
 - 11 topographic indices
 - Solar radiation
- Vegetation
 - NDVI
- Fuel Moisture
 - 1000-hour fuel moisture percentiles, inverted

- Random Forest, implemented in R
- 1500 classification trees
- Select optimal model with lowest classification error
- Outputs
 - Model performance
 - Variable importance
 - RF model object for predictions

esa

Ecosphere

Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006

Gregory K. Dillon,^{1,}† Zachary A. Holden,² Penelope Morgan,³ Michael A. Crimmins,⁴ Emily K. Heyerdahl,¹ and Charles H. Luce⁵

Statistical models that predict the binary severity given a set of topographic, vegetation, and fuel moisture conditions Raster spatial data "stack" of predictor variables for all areas Phase 3 Map Severe Fire Potential 0 - 9 10 - 19 20 - 29 🔲 30 - 39 40 - 49 50 - 59 60 - 69 90 - 100 Severe Fire Potential Map

Predictor Variables

- Must be spatially comprehensive
- Represent the landscape for which you want predictions
- Topography static
- Vegetation used NDVI from MODIS
 - West 2011
 - East 2014
- Fuel moisture use constant values at common fire weather thresholds (80th, 90th, 97th percentile)

Predictions

- Every 30m pixel classified by each tree
- 1500 predictions of binary severity

Example: 1,245 yes 255 no 1,245 / 1,500 = 83%

Statistical models that predict the binary severity given a set of topographic, vegetation, and fuel moisture conditions Raster spatial data "stack" of predictor variables for all areas Phase 3 Map Severe Fire Potential 0 - 9 10 - 19 20 - 29 🔲 30 - 39 40 - 49 50 - 59 60 - 69 90 - 100

Severe Fire Potential Map

Predictor Variables

- Must be spatially comprehensive
- Represent the landscape for which you want predictions
- Topography static
- Vegetation used NDVI from MODIS
 - West 2011
 - East 2014
- Fuel moisture use constant values at common fire weather thresholds (80th, 90th, 97th percentile)

Predictions

- Every 30m pixel classified by each tree
- 1500 predictions of binary severity

Example: 840 yes 660 no } 840 / 1,500 = 56%

Statistical models that predict the binary severity given a set of topographic, vegetation, and fuel moisture conditions Raster spatial data "stack" of predictor variables for all areas Phase 3 Map Severe Fire Potential 0 - 9 10 - 19 20 - 29 🔲 30 - 39 40 - 49 50 - 59 60 - 69 90 - 100

Severe Fire Potential Map

Predictor Variables

- Must be spatially comprehensive
- Represent the landscape for which you want predictions
- Topography static
- Vegetation used NDVI from MODIS
 - West 2011
 - East 2014
- Fuel moisture use constant values at common fire weather thresholds (80th, 90th, 97th percentile)

Predictions

- Every 30m pixel classified by each tree
- 1500 predictions of binary severity

Example: 330 yes 1,170 no 330 / 1,500 = 22%

Forest

Random Forest Model Performance

- PCC = Percent Correctly Classified
- AUC = Area Under receiver operating characteristic Curve

			Number o	f predictors	Random Fo	orest model mance
Region	MTBS fires ^a	Sample points	Full model	Optimal model	PCC ^b	AUC °
1	467	73,087	13	9	0.71	0.78
2	830	58,321	12	6	0.72	0.80
3	988	100,000	12	10	0.65	0.71
4	2,465	100,000	12	8	0.68	0.75
5	383	50,301	12	9	0.70	0.77
6	543	39,094	13	5	0.74	0.82
7	1,069	73,253	13	4	0.72	0.80
8	1,611	39,566	14	7	0.71	0.79
9	1,216	39,750	14	6	0.73	0.80
10	789	41,282	13	6	0.77	0.85
11	817	65,235	13	9	0.75	0.83
12	592	37,024	13	9	0.72	0.79
13	690	54,970	12	9	0.72	0.79
14	348	12,872	13	9	0.73	0.80
15	860	100,000	12	8	0.66	0.72
16	467	8,368	12	5	0.74	0.82
17	305	2,779	13	9	0.83	0.91
18	609	17,162	13	5	0.84	0.91
19	482	12,479	13	4	0.77	0.84
20	717	8,941	13	5	0.75	0.82
21	197	9,417	12	5	0.87	0.93
22	2,246	64,733	12	5	0.80	0.88
23	2,938	66,527	11	5	0.80	0.88
24	539	7,642	12	6	0.75	0.83
25	7	122	12	4	0.70	0.73

Nonforest

Random Forest Model Performance

- PCC = Percent Correctly Classified
- AUC = Area Under receiver operating characteristic Curve

			Number of	f predictors	Random Fo	rest model mance				
Region	MTBS fires ^a	Sample points	Full model	Optimal model	PCC [®]	AUC°				
1	467	27,749	13	9	0.74	0.82				
2	830	100,000	12	7	0.75	0.83				
3	988	100,000	13	9	0.76	0.85				
4	2,465	100,000	13	7	0.70	0.78				
5	383	15,598	12	9	0.72	0.79				
6	543	35,289	13	9	0.73	0.81				
7	1,069	100,000	14	9	0.74	0.82				
8	1,611	100,000	14	7	0.69	0.76				
9	1,216	100,000	13	9	0.74	0.82				
10	789	34,112	13	9	0.76	0.83				
11	817	54,758	13	9	0.77	0.85				
12	592	78,222	13	9	0.76	0.83				
13	690	93,560	13	4	0.74	0.82				
14	348	23,447	13	5	0.79	0.87				
15	860	100,000	12	9	0.77	0.85				
16	467	27,979	12	9	0.78	0.86				
17	305	2,743	13	6	0.82	0.90				
18	609	5,049	11	5	0.83	0.90				
19	482	1,307	12	4	0.77	0.84				
20	717	13,543	13	7	0.84	0.91				
21	197	1,652	11	6	0.85	0.93				
22	2,246	64,733	11	5	0.80	0.88				
23	2,938	3,859	11	4	0.80	0.89				
24	539	262	12	7	0.69	0.72				
25	7	0	NA	NA	NA	NA				

https://www.frames.gov/firesev/home

SEV 12 14					
Contacts Documentation	Return to FRAM	ES Forest and Woo	odland Settings	Non-Fores	st Settings
A A	Region	GeoTiff	ESRI Grid	GeoTiff	ESRI Grid
25	18	<u>sfp_fw90_r18.tif.zip</u>	<u>sfp_fw90_r18.zip</u>	<u>sfp_nf90_r18.tif.zip</u>	<u>sfp_nf90_r18.zip</u>
nen	19	<u>sfp_fw90_r19.tif.zip</u>	<u>sfp_fw90_r19.zip</u>	<u>sfp_nf90_r19.tif.zip</u>	<u>sfp_nf90_r19.zip</u>
23	20	<u>sfp_fw90_r20.tif.zip</u>	<u>sfp_fw90_r20.zip</u>	<u>sfp_nf90_r20.tif.zip</u>	<u>sfp_nf90_r20.zip</u>
24	21	<u>sfp_fw90_r21.tif.zip</u>	<u>sfp_fw90_r21.zip</u>	<u>sfp_nf90_r21.tif.zip</u>	<u>sfp_nf90_r21.zip</u>
1	22	sfp_fw90_r22.tif.zip	<u>sfp_fw90_r22.zip</u>	<u>sfp_nf90_r22.tif.zip</u>	<u>sfp_nf90_r22.zip</u>
WARE WARE	23	sfp_fw90_r23.tif.zip	sfp fw90 r23.zip	<u>sfp_nf90_r23.tif.zip</u>	<u>sfp_nf90_r23.zip</u>
22	24	sfp_fw90_r24.tif.zip	sfp fw90 r24.zip	<u>sfp_nf90_r24.tif.zip</u>	<u>sfp_nf90_r24.zip</u>
0 250 500 Kilomet	25 ers	<u>sfp_fw90_r25.tif.zip</u>	sfp fw90 r25.zip	sfp nf90 r25.tif.zip	sfp_nf90_r25.zip
0 250 50	0 *90th pe Miles In addition	rcentile inverted 1000- on, you can:	hour fuel moisture		
	• Vi • Bi W • Vi	ew a metadata file [pd rowse a graphic (JPG fi ith forest and non-fore ew model performance enerate the Severe Fire	f) for the Severe Fire le or PDF file) of the S st combined. e results for the Rand Potential map for for	Potential map. Gevere Fire Potential ma lom Forest statistical m rest and woodland sett	ap at its full extent, odels used to ings or non-forest

settings.

https://www.frames.gov/firesev/east

Distribution of SFP values

- Mostly below 50
- Values above 80 are rare

Patterns in SFP predictions – West

• Average SFP values are highest on cool slopes

Patterns in SFP predictions – West

- Average SFP values are highest on cool slopes
- Influenced by Middle and Northern Rockies

Patterns in SFP predictions – West

- Average SFP values are highest on cool slopes
- Influenced by Middle and Northern Rockies
- Exception: S California, Sierras, and Great Basin

Patterns in SFP predictions – West

- Average SFP values are highest on cool slopes
- Influenced by Middle and Northern Rockies
- Exception: S Calif, Sierras, and Great Basin
- SW and Southern Plains consistently lower

Patterns in SFP predictions – East

• Average SFP values are highest on ridges

Patterns in SFP predictions – East

- Average SFP values are highest on ridges
- Great Lakes higher on all slopes and ridges

Patterns in SFP predictions – East

- Average SFP values are highest on ridges
- Great Lakes higher on all slopes and ridges
- SFP in Appalachians high on warm slopes and ridges

Patterns in SFP predictions – East

- Average SFP values are highest on ridges
- Great Lakes higher on all slopes and ridges
- SFP in Appalachians high on warm slopes and ridges
- Central and Eastern Plains consistently low

Patterns in MTBS data

- Average percent high severity in the west
 - Forest: 33%
 - Nonforest: 33%

Patterns in MTBS data

- Average percent high severity in the west
 - Forest: 33%
 - Nonforest: 33%
- Average percent higher severity in the east
 - Forest: 20%
 - Nonforest: 10%

- Evaluate the predictive ability of the map
 - How often are our predictions "right"?
- Use a 10% subset of sample pixels withheld for validation
- Only used fires between 85th and 95th percentile of 1000-hour fuel moisture index
- Reclassify SFP to binary, testing a range of breakpoints (25 – 75)

- Evaluate the predictive ability of the map
 - How often are our predictions "right"?
- Use a 10% subset of sample pixels withheld for validation
- Only used fires between 85th and 95th percentile of 1000-hour fuel moisture index
- Reclassify SFP to binary, testing a range of breakpoints (25 – 75)

- Evaluate the predictive ability of the map
 - How often are our predictions "right"?
- Use a 10% subset of sample pixels withheld for validation
- Only used fires between 85th and 95th percentile of 1000-hour fuel moisture index
- Reclassify SFP to binary, testing a range of breakpoints (25 – 75)
- Compare to binary severity from MTBS

- Evaluate the predictive ability of the map
 - How often are our predictions "right"?
- Use a 10% subset of sample pixels withheld for validation
- Only used fires between 85th and 95th percentile of 1000-hour fuel moisture index
- Reclassify SFP to binary, testing a range of breakpoints (25 – 75)
- Compare to binary severity from MTBS

Forest

- Best SFP breakpoints mostly under 50
- AUC values mostly under 0.7
- PCC values mostly 50-70%

				Results for be	st breakpoint
Region	Fires	Samples	Best SFP breakpoint	AUC ^a	PCC ^{<i>b</i>}
1	125	2,250	40	0.58	0.61
2	119	1,959	45	0.61	0.60
3	277	6,052	40	0.54	0.51
4	243	3,990	50	0.58	0.60
5	98	1,539	40	0.64	0.63
6	82	1,243	35	0.59	0.59
7	161	1,834	45	0.61	0.60
8	126	916	35	0.55	0.52
9	93	1,061	30	0.61	0.60
10	66	981	25	0.55	0.55
11	87	1,035	35	0.68	0.67
12	54	625	25	0.54	0.46
13	57	1,150	50	0.58	0.59
14	6	144	25	0.53	0.50
15	184	3,151	50	0.58	0.59
16	13	301	25	0.50	0.47
17	2	4	NA	NA	NA
18	105	279	55	0.74	0.86
19	127	328	35	0.62	0.66
20	83	197	35	0.50	0.62
21	36	401	40	0.71	0.75
22	413	1,352	25	0.61	0.56
23	490	1,549	35	0.64	0.63
24	47	83	50	0.63	0.64
25	0	0	NA	NA	NA
Average	124	1,297	38	0.60	0.60

Nonforest

- Best SFP breakpoints mostly under 50
- AUC values mostly under 0.7
- PCC values mostly 50-70%

				Results for be	est breakpoint
Region	Fires	Samples	Best SFP breakpoint	AUC ^a	PCC ^b
1	97	959	45	0.60	0.60
2	244	3,986	50	0.58	0.60
3	312	4,947	35	0.60	0.56
4	771	18,593	50	0.60	0.61
5	68	436	45	0.64	0.62
6	106	934	35	0.60	0.52
7	258	2,989	40	0.62	0.62
8	473	9,110	50	0.57	0.57
9	323	4,867	35	0.63	0.62
10	127	1,044	40	0.65	0.67
11	116	1,215	45	0.68	0.67
12	129	1,528	45	0.59	0.55
13	148	1,871	45	0.58	0.59
14	28	274	50	0.58	0.58
15	205	3,403	40	0.61	0.60
16	38	226	25	0.61	0.49
17	7	15	NA	NA	NA
18	45	161	45	0.52	0.44
19	13	23	NA	NA	NA
20	115	431	35	0.50	0.75
21	24	71	40	0.79	0.76
22	48	65	55	0.60	0.63
23	73	149	25	0.72	0.70
24	4	5	NA	NA	NA
25	0	0	NA	NA	NA
Average	151	2,292	42	0.61	0.61

Variable Importance – Forest

West

- 1. Elevation (avg rank 1.6)
- 2. NDVI (avg rank 2.1)
- 3. Fuel moisture (avg rank 2.6)

East

- 1. Fuel moisture (avg rank 2.1)
- 2. NDVI (avg rank 2.5)
- 3. Elevation (avg rank 3.0)

-	Region																								
-			-						-We	st											E	ast-			-
Variable	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Vegetation																									
NDVI	2	2	2	3	1	2	3	3	1	2	3	2	2	3	2	1	1	2	3	2	3	2	2	2	4
Fuel moisture																									
FM1000	3	3	4	4	2	3	2	2	3	1	1	3	3	1	3	3	3	1	1	1	1	1	1	3	8
Topography																									
DEM	1	1	1	1	4	1	1	1	2	3	2	1	1	2	1	2	2	3	2	3	2	3	4	4	3
SLOPE	4	4	3	2	5			5	5	4	4	7	9		4		8							5	
RAD ^o	8		9	5	8			6			7	5	6	7	6		5	4		4	4	4	3	1	
GSPET [¢]	6	—	—	—	—	5	—	4	4		6	4	—	5	—	—	4								
HLI	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	_	_	_	_
TPI150			7	9	6													5	4	5				6	
TPI2000	5	5	5	6	3	4	4	7	6	5	5	8	4	4	5	4	6				_		_		
HSP			8										8	8											
DISS3																					5				1
DISS27	7		6	7	7						8	6	5	6	7		9								
ERR3																			—	_		—	—	—	—
ERR15	_	_	_	_	—	_				_	—	_	_	_	_	_	—					5	5		2
ERR27	9	6	10	8	9					6	9	9	7	9	8	5	7	3	2	3	2	3	4	4	3

Т

Variable Importance – Nonforest

West

- NDVI (avg rank 1.2) 1.
- Elevation (avg rank 2.2) 2.
- 3. Fuel moisture (avg rank 3.0)

East

- Fuel moisture (avg rank 1.2) 1.
- NDVI (avg rank 2.4) 2.
- Elevation (avg rank 3.0) 3.

F	Region																								
L			-						-We	st								-			E	ast			-
Variable	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Vegetation																									
NDVI	1	1	1	1	2	2	2	1	1	1	1	1	1	1	1	1	1	2	3	2	1	2	4	3	
Fuel moisture																									
FM1000	2	3	3	5	3	3	3	4	3	2	3	3	3	3	2	3	3	1	1	1	2	1	1		
Topography																									
DEM	3	4	2	3	1	1	1	2	2	3	2	2	2	2	3	2	2	4	2	3	3	3	2	4	
SLOPE	5	6	6	6	6	7	6	6	9	7	6	9			8	8				5				6	
RAD ^o	_	2	7	4	5	6	5	5	5	4	4	6			7	4	5	3		4	4	4	3	2	
GSRAD ^c	4	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_								
APET ^c	6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_								
GSPET ^c	_	_	5	2	_	4	4	3	4	5	5	4	_	5	_	_	4								
HLI	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
TPI150					8																				
TPI2000	7	5	4	7	4	5	7	7	6	6	7	5	4	4	4	6	6		4	7					
HSP																		_					_	7	
DISS3																					_				
DISS27	8		8		7	8	9		8	8	9	7			6	7					6			1	
ERR3															9	9								5	
ERR15	_	_	_	_	_	_			_	_	_	_		_	_	_	_	_	_		5	_	_	_	
ERR27	9	7	9		9	9	8		7	9	8	8			5	5		5		6	_	5			

Key Findings

- 1. Burn severity is a complex phenomenon. Evaluating it across different ecosystems requires flexibility and adaptability. Data are noisy.
- 2. Availability of burn severity data is patchy... affects ability to model everywhere.
- 3. Vegetation, topography, and site-specific fuel moisture affect severity.
 - a. Topographic variables may be surrogates for vegetation distribution
 - b. Fires can burn hotter where there is more fuel... especially in the West
 - c. Fuel moisture is most important in the East... severity is climate-limited

Key Findings

- 4. Independent validation is important with this type of modeling and mapping.
- 5. High burn severity occurs on a relatively small portion of burned area.
 - a. About 1/3 of burned area in the West, much less in the East
 - b. Proportion of high severity generally stable over time (Dillon et al. 2011)
 - c. Area burned with high severity is increasing (Parks and Abatzoglou 2020)
- 6. Data from our work has contributed to ongoing studies of severity
 - a. <u>Next Generation Fire Severity Mapping</u> Sean Parks and others

Management Implications

- 1. Best use of SFP map is for long-term assessments and strategic planning.
- 2. The strength of the SFP map is in generalized patterns in potential severity, rather than how a specific pixel is mapped.
- 3. The SFP index represents the likelihood of high severity (or moderate and high in the East) but says nothing about the likelihood of low severity fire.
- 4. The SFP map could provide a starting point to inform where fuels treatments could help to moderate severe fire potential, but it is not detailed enough to guide specific placement of treatments.

Thank You

greg.dillon@usda.gov

Photo: Greg Dillor