From Floodplains to Coral Reefs: Restoration to Generate Impact And Get To Scale

Using science for decision making

James Byrne Maximizing the benefits of reef restoration.Chad Wiggins Science & Traditional Management- Community-based MPA, HI.Matthea Yepsen Measuring the ecological uplift of restoration, adaptation to CC and

reducing risk and vulnerability of human coastal communities.

Translating science to generate credibility


Amanda Wrona-MeadowsLessons from monitoring, large scale ARRA restoration.Kemitt-Amon LewisReef resilience and coral restoration in the USVI.Christine PickensHydrologic and oyster restoration through the
Albemarle-Pamlico Climate Change Adaptation Project.

Convening diverse partners and stakeholders

Jenny BakerRestoring floodplains and estuaries in Puget SoundEric ConklinHAWAI'I SUCKS -- and we are darn good at it!Invasive algae remediation using the Supersucker.

Restoration by Design: Utilizing Science in Coral Restoration

James Byrne

Main Questions

- Can we grow Coral and Outplant Successfully?
- Can it be done on Ecologically Significant Scale?
- Why are we restoring Reefs?
- What Does Success look like?

Maximizing the Benefits from Coral Restoration

- Restoring Individual Reefs
- Enhancing Tourism
- Enhancing Fisheries
- Population Enhancement/Recovery
- Coastal Protection
- Improved Mitigation

Site Restoration

COMMUNICATIONS

ARTICLE

Received 24 Sep 2012 | Accepted 20 Dec 2012 | Published 29 Jan 2013 DOI: 10,1038/ncomms240

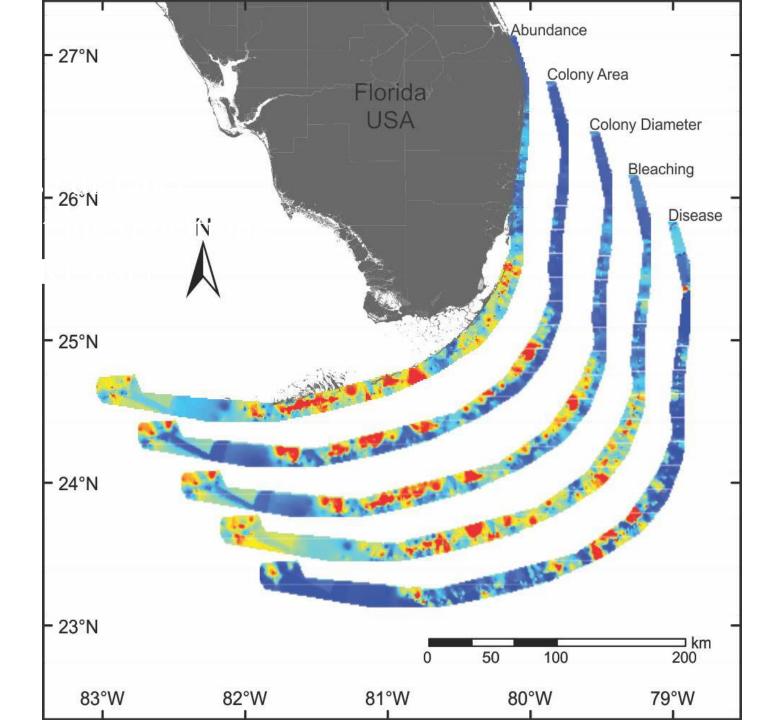
Caribbean-wide decline in carbonate production threatens coral reef growth

Chris T. Perry¹, Gary N. Murphy¹, Paul S. Kench², Scott G. Smithers³, Evan N. Edinger⁴, Robert S. Steneck⁵ & Peter J. Mumby⁶

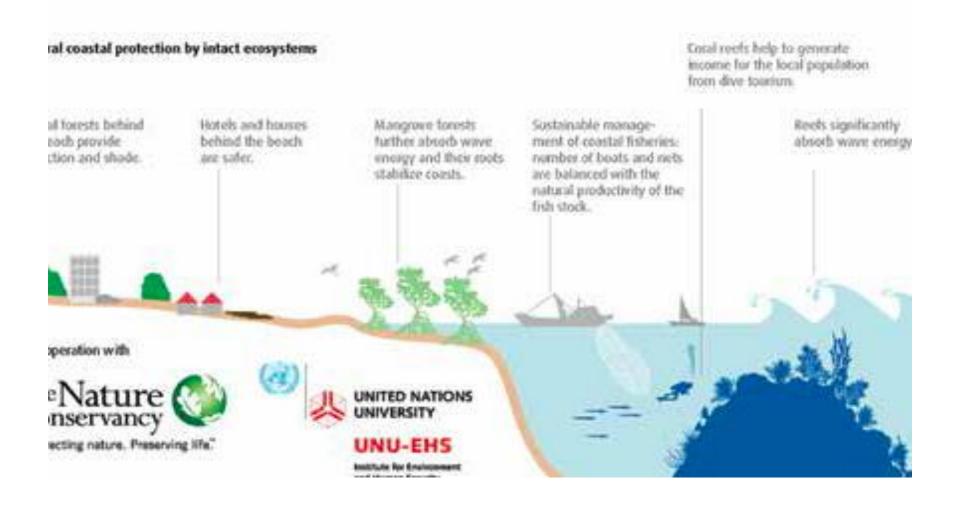
Global-scale deteriorations in coral reef health have caused major shifts in species composition. One projected consequence is a lowering of reef carbonate production rates, potentially impairing reef growth, compromising ecosystem functionality and ultimately leading to net reef erosion. Here, using measures of gross and net carbonate production and erosion from 19 Caribbean reefs, we show that contemporary carbonate production rates are now substantially below historical (mid- to late-Holocene) values. On average, current production rates are reduced by at least 50%, and 37% of surveyed sites were net erosional. Calculated accretion rates (mm year⁻¹) for shallow fore-reef habitats are also close to an order of magnitude lower than Holocene averages. A live coral cover threshold of ~10% appears critical to maintaining positive production states. Below this ecological threshold carbonate budgets typically become net negative and threaten reef accretion. Collectively, these data suggest that recent ecological declines are now suppressing Caribbean reef growth potential.

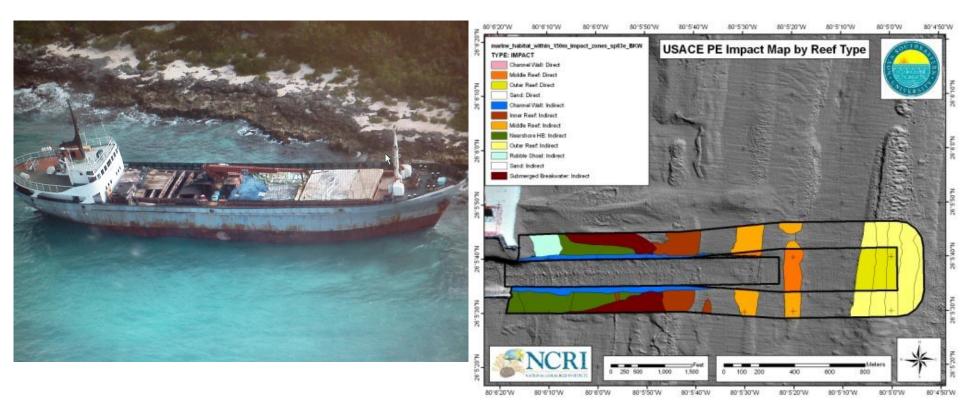
¹ Geography, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 481, UK ² School of Environment, The University of Auckland, Private Bag 2020, Auckland, New Zealand, ³ School of Earth and Environmental Sciences, James Code (Junessita), Australia, ⁴ Department of Geography, Menorial University, St. John's, Newfoundland, Canada ABB 390, ³ School of Marine Sciences, University of Mane, Darling Mane, Canada, Maloda, Maino (M273), Lika ⁶ Miniso, Savial Exclusion, Las Kchool of Marine Sciences, University of Characteristic Mane, Darling Mane, Canada, Maloda, Maino (M273), Lika ⁶ Miniso, Savial Exclusion, Las Kchool et Relinoira Sciences, University of Characteristic Marine, Darling Marine, Canada, Maloda, Maino (M273), Lika ⁶ Miniso, Savial Exclusion, Las Kchool et Relinoira Sciences, University of Characteristic Marine, Darling Marine, Canada, Marine, Canada, Marine, Marine, Canada, Marine, Marine, Marine, Marine, Marine, Marine, Marine

Engaging the Dive Industry



Recreational	Scientific			
 Assisting with assembling of nursery apparatus Assisting with nursery set-up Removing algae and other epiphytes from nursery structures/corals Affixing newly fragmented corals to nursery apparatus Fixing broken fragments or fragments that fall off the tree or block epoxying or securing them back into place, or if origin is unknown, moving them to an "unknown" tree or block Differentiating healthy vs. unhealthy Estimating percentage affected tissue Measuring corals Affixing corals to predetermined nursery apparatus or outplant sites Removing predators (snails, fireworms) from the nursery Basic underwater repair of blocks, trees (ie. Epoxying a puck back onto a pedestal; securing a new monofilament line on a tree to replace one that broke) Photography 	 Coral health assessment (differentiating between paling, bleaching, and disease etc.) Nursery site selection, design, and set-up Determination of viable corals to be used in nurseries Collection of viable fragments of opportunity Fragmentating of corals Outplant site (and coral) selection Ouplant site mapping and monitoring Coral nursery and restoration experimental design, data collection, and analysis Collection of coral tissue for genetic analysis. 			


Enhancing Fisheries


Enhancing Populations/Recovery

Enhancing Coastal Protection

Improving Mitigation

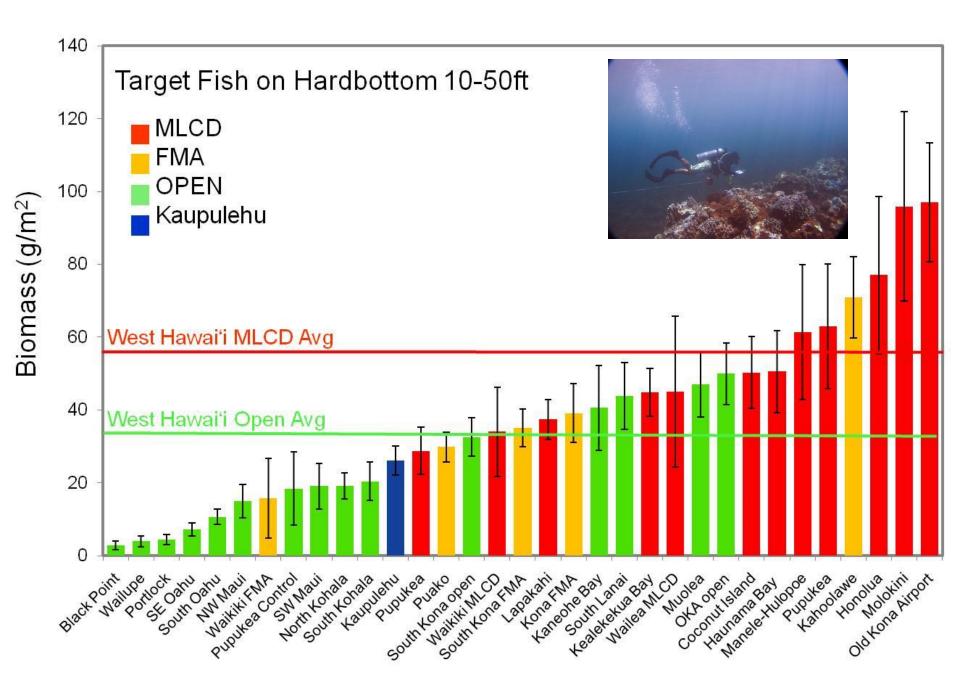
Bringing Together Science and Traditional Managem to Support a Community-based MPA in West Hawa

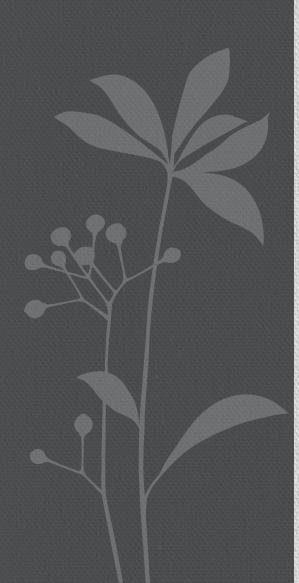
Chad Wiggins

Hawaiian Newspaper Translation Project – 1923

"....fisheries management appears to have been carried out at a local level....."

".... biological processes that were the basis for management decisions often occurred on small geographical scales..."


"..... individuals responsible for these decisions were the priests and kapu were put into place by the chiefs..."


".... the priests had considerable knowledge of spawning seasons ...for many important aquatic species important as food to the people...

".....Much of this information has been lost in modern times

Ka hoʻopakeleʻana i naiʻa From Ka Nupepa Kuokoa, March 8, 1923

SOUND SCIENCE AS A CRITICAL COMPONENT OF TAKING HABITAT RESTORATION TO SCALE

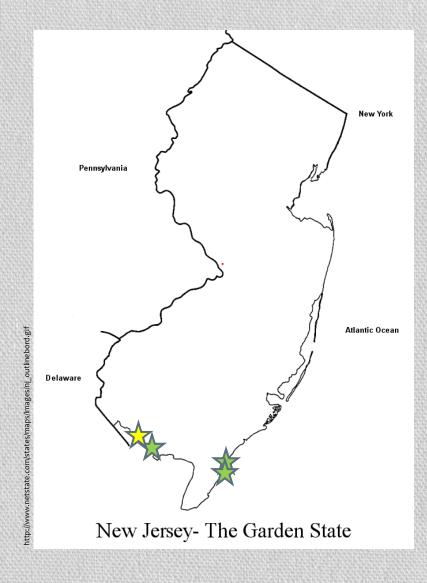
Metthea Yepsen NJ Chapter

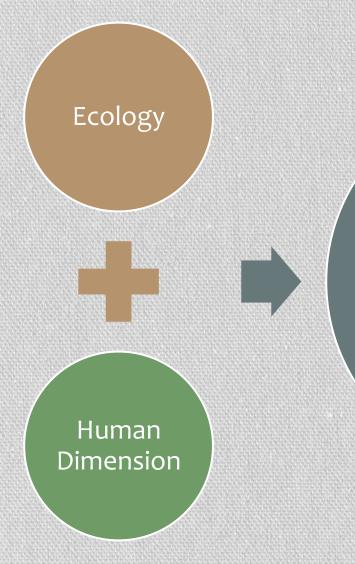
Superstorm Sandy Funding

Pilot Sites

- Multiple methods
- Multiple locations

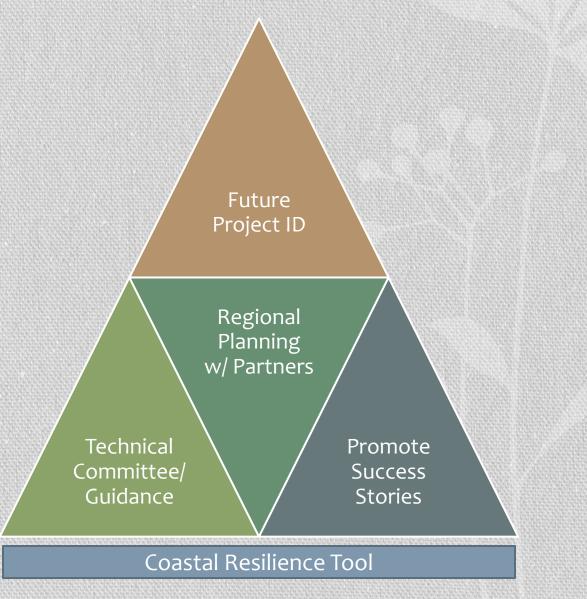
Sound Science


- Do no harm
- Ecology
- Ecosystem services



Pilot Sites

Current Methods ★Oyster reef breakwaters ★Beneficial use of dredge material


- Thin-layer placement
- Marsh edge restoration

Sound Science

Taking Natural Infrastructure "Up To Scale"

Summary

Sound Science

"Up to Scale"

Pilot Sites

Coastal and Marine Restoration: Benefits for Humans and Habitats

Recovery Act Projects 2009-2012

2009 - 2012 American Recovery and Reinvestment

Alaska

Hawaii

Puerto Rico

Alabama Breakwater and Estuary Restoration

Goals: Restore and enhance shoreline habitat with a long-term goal of boosting the economy of coastal Alabama

1.5 miles submerged breakwater, 3 acres oyster reef, and 30 acres seagrass beds over 10,000 feet of shoreline.

Jobs: 35 to 40 new jobs

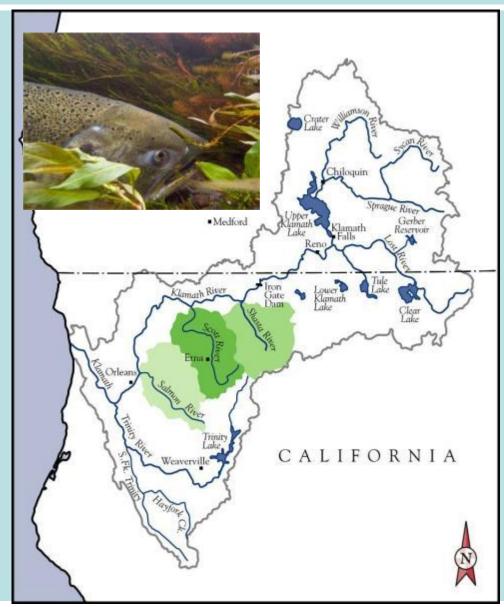
Virginia Seaside Bays Restoration

- Oyster reef structure and function
- Functional eel grass meadows
- Evaluate potential techniques for bay scallop restoration
- Conduct water quality monitoring

Goal	Objective	Parameter	Technique & Method	Baseline	Reference	Target	Pre-restoration	Post-restoration
Restore oyster reef structure and function	Restore reef structure with fossil shell	Acres of planted shells	Dredge local fossil shell and import fossil shell to restoration for shell planting	Benthos devoid of oysters	N/A	24 acres of functional substrate	Pre-project survey	One GPS survey per reef of substrate footprir
		Increased vertical topography	Photograph and measure topography of restored reefs with chain method	Flat	Average topography of reference reef	Average topography of reference reef (TBD)	N/A	Annual sample a each reef; 3 transects per acn
	Restore functional oyster reefs	Length of growing oysters	Measurement of oyster shell length	N/A	Average size of oysters on reference reefs - value?	Mixed-size (age) oysters	N/A	Minimum of 3 - 1/16 m ² quadrat samples at each reef annually
		Number of oysters per square meter (density)	Average number of oysters per 1/16 m ² quadrat	N/A	Average density of oysters on reference reefs - value?	Average density of oysters on reference reefs (TBD)	N/A	Minimum 3 - 1/1 m ² quadrat samples at each reef annually subsample of 10
		Create biomass reference for oysters in VA Seaside Bays	Ash free dry weight and length	N/A	N/A	TBD	N/A	oysters from eac 1/16m ² quadrai and determine as
		Percent Coverage of Macroalgae	Visual observation estimate	N/A	N/A	N/A	N/A	Minimum annual at time of samplin in the fall
		Number and kinds of other fauna present	Count, identify, and measure length	N/A	N/A	N/A	N/A	Minimum of 3–1/16m ² quadrar samples at each reef annually
Restore functional eelgrass meadows	Collect eelgrass seeds	Number of eelgrass seeds	Hand and machine collections	N/A	N/A	10 million seeds per year	N/A	N/A
	Planting eelgrass seeds	Number of acres	Hand broadcast of seeds at a rate of 50,000 - 150,000 per 1-acre plot	N/A	N/A	100 acres planted	Pre-project survey and trial planting	Seedling succes monitored each spring with dive transect survey
	Establishment and spread of eelgrass	Increasing acreage of eelgrass in the coastal bays	Vertical aerial photography	0 acres	N/A	100 acres planted and spreading	Pre-project survey and trial planting	Vertical aerial photography at 2,000 and 12,00 feet and standar mapping procedures
Evaluate potential techniques for bay scallop restoration	Evaluating spawning potential	Number of larvae spawned	Count number of eyed larvae in a subsample per spawning attempt	N/A	N/A	TBD	N/A	TBD
	Evaluate growth potential	Length of growing bay scallops	Measurement of bay scallop shell length	N/A	N/A	TBD	N/A	TBD
	Establish survival rates in the nursery and at the field site	Number of living bay scallops	Number of living scallops in the nursery; Number of living scallops per cage and on bottom plots	N/A	N/A	TBD	N/A	TBD
	Evaluate the costs associated with each approach	Measure cost per viable bay scallop in the field	Determine cost associated with each approach	N/A	N/A	TBD	N/A	TBD
Conduct water quality monitoring	Assess eelgrass plot performance	Assess eelgrass lot performance thorophyll fluorescence, temperature, suitability for dissolved	Discreet measurements with flow-through system from boat and fixed stations sampling using sensor arrays	N/A	N/A	Suitable water quality for restoration and growth - values?	Pre-restoration survey (July-	Conduct Dataflo cruises througho the SAV growin season (March November) and
	eelgrass and bay							deploy the fixe stations for a minimum of 14-co intervals bi- monthly throughout this same period.

TNC Recovery Act Projects

Project	Monitoring	% Invested Monitoring	Right amount?
Alabama	\$750,000	25.4	Just Right
California	\$330,000	20	Just Right
Virginia	\$295,000	13.6	Just Right
Hawaii	\$250,000	7.4	Just Right
Alaska	\$35,000	3.4	Too low
Louisiana	\$140,000	3.0	Just Right
Washington	\$95,800	1.6	Too High


CA – Big Springs Creek Shasta River habitat restoration

Goals: Restore degraded salmon habitat and

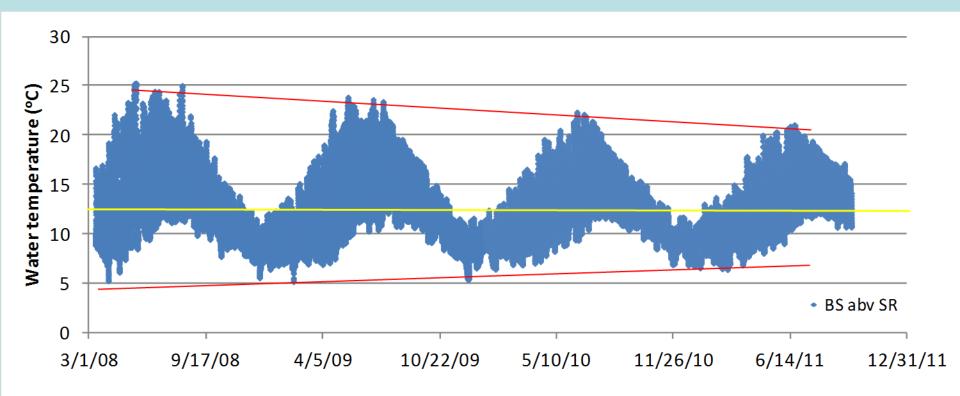
demonstrating agricultural practices that benefit both people and fish.

Jobs: 54 jobs and 18,741 labor hours of employment

Problem: Loss of CA Salmon Habitat

Irrigation return

Large irrigation diversions


Cattle in streams and creeks

Monitoring Water Temperature

BEFORE 2008

SE Alaska – Hydrological Reconnection Salmon Habitat

Goals: Improve salmon habitat to restore fisheries to historic levels to meet the needs of local residents and others.

460 acres of seagrass estuary and 65 miles of stream habitat

Jobs: 20 jobs and an estimated 10,800 hours

The Solution: Hydrologic Reconnection

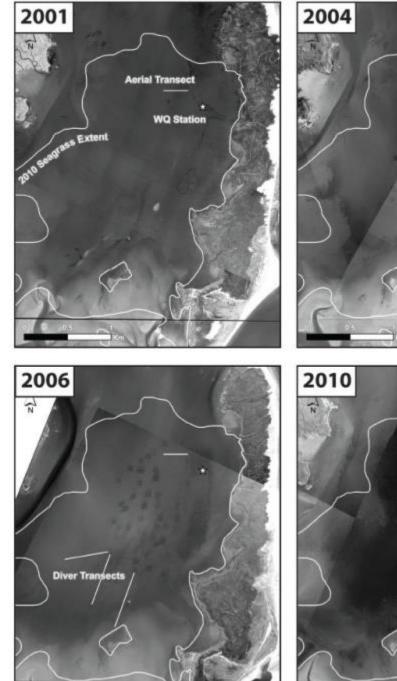
Fish Passage Captured on Video

The Problem: Extensive invasive algae covers shallow reef

VA Seaside Bays Restoration

Goals: **Twenty-four acres** oyster reefs at 12 sites and **262 acres of seagrass** planted. Test the reintroduction of Bay Scallops

Jobs: 57 jobs with 59,927 labor hours





Since 1999: 38 million seeds, 369 plots

Monitored: aerial photos, sediment, genetics, water quality (seven years)

Source: Bob Orth VIMS

A Million and One Answers to the Questions about

Caribbean Coral Reef Restoration

Kemit-Amon Lewis Caribbean Coral Conservation Manager

Caribbean Coral Reef Restoration FAQs

How will coral restoration make a difference with on-going climate issues?

How do you define restoration success?

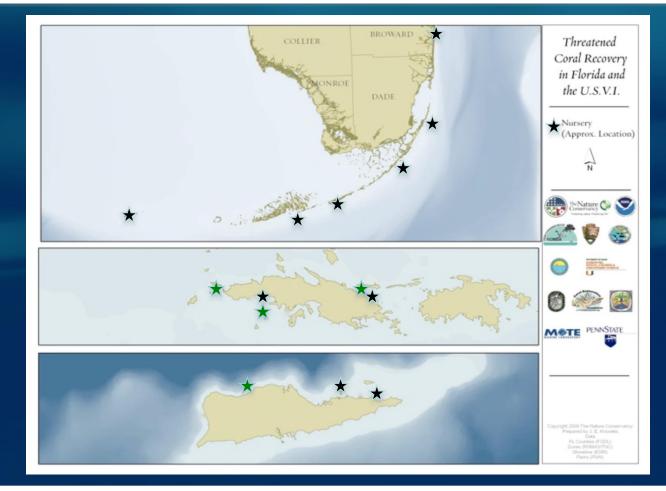
How can I help?

Science + Conservation = AWESOME

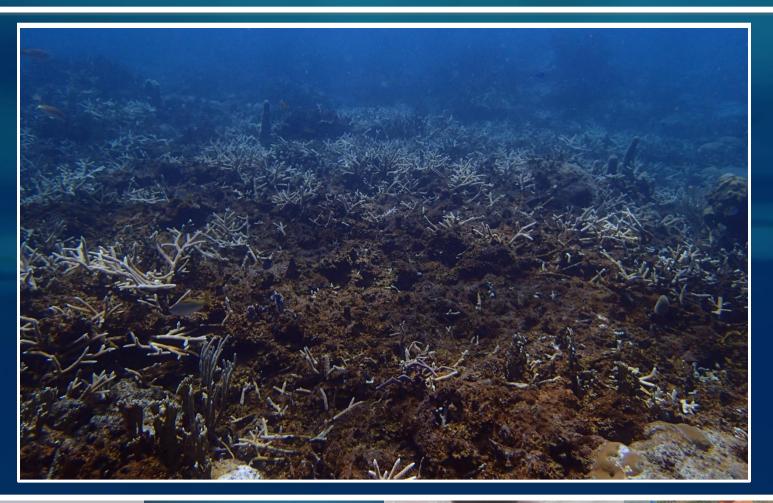
CONSERVATION BY DESIGN MEASURES

ADAPTIVE MANAGEMENT

SCIENCE THAT GUIDES CONSERVATION



From 1 to 1,000 to 1,000,000,000


Love Your Partner(s)

Understanding the Importance of and Enhancing Genetic Diversity

"If we control the things that we can, we can make the world a better place for those that can't."

"__we need to recognize that the coral reef crisis is a crisis of governance. Scientistis can help by undertaking solution-focused research, by participating more vigorously in policy debates to improve coral reef legislations and implementation, and by sending the clear message that reefs can still be saved if we try harder." - Hughes et al., 2010

Focusing on Resilient Sites Towards a Higher Potential for Restoration Success

Positive Attributes Good Water Quality

Living Acroporids and Recruits

Flow and Flushing

Calcareous Algae

Diverse Coral Speciation

Diadema

Herbivorous Fishes

Available Space

Negative Attributes Excessive Macroalgae Hermodice Coralliophila Bleaching/Paling Disease

Proposed Restoration Sites for TNC's USVI Coral Restoration Program Yr 1

The above sites were chosen based on surveys conducted using modified AGRA methodology to assess probability of restoration success based on water quality and flow dynamics, herbivore trophic structure, reef health, available space, and presence and health of living Acroporid corals.

Out-Plant Site Resilience Score vs. Out-Planted Coral Survivorship

It Takes a Village to Raise a Child Corals

VISION *"Thinking about or planning the future with imagination or wisdom."*

Archie Carr, Mahatma Gandhi, Martin Luther King, Jr., Nelson Mandela, **George Washington** Carver, William J. Clinton, General Buddhoe, Barack Obama, Matthew Gilligan, Phil Kramer, Ruth Blyther, Jane Goodall, Arthur Ashe, Steve Jobs, Jacques Cousteau, John Audubon...

Albemarle-Pamlico Climate Change Adaptation Project: Oyster Habitat Creation

Christine Pickens Coastal Restoration and Adaptation Specialist The Nature Conservancy, North Carolina Chapter

TNC/NOAA CRP Partnership 2002-2006

- O 4 Oyster Sanctuaries
- O TNC starts oyster shell recycling with restaurants 2003-2006, 4000 bushels over 4 years
- O NC starts a staterun program 2006-2013
- O Remote setting spat on limestone marl
- O Monitoring

A-P Climate Adaptation Project

Carbon Sequestration

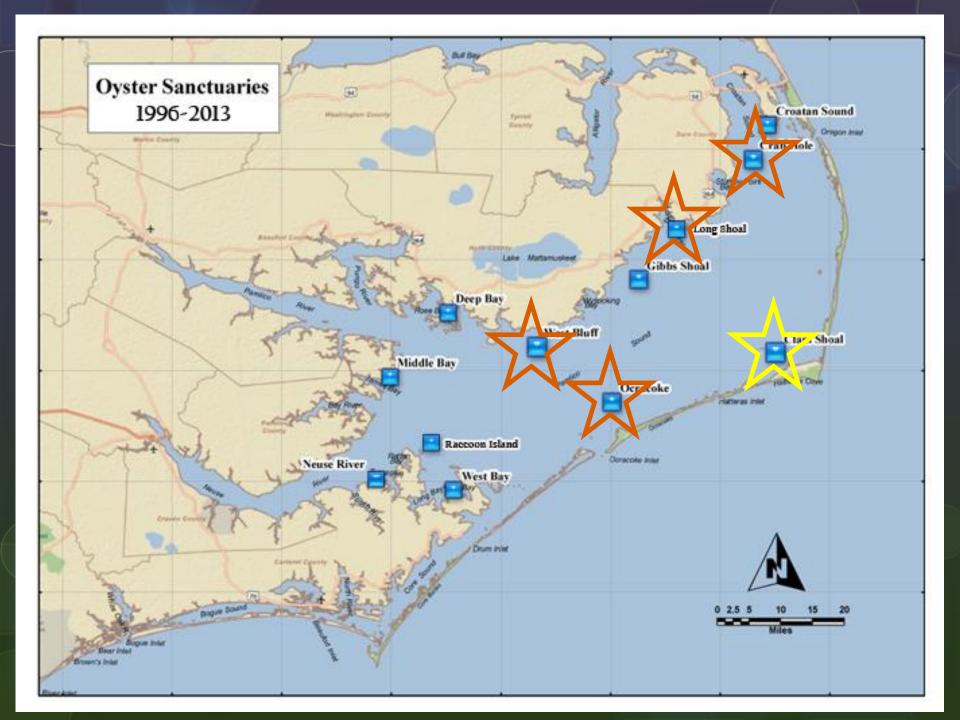
C

Goal: To develop, implement, and refine climate adaptation strategies for coastal wetlands such that ecosystem functions are preserved.

Ecosystem Services

Wetland Restoration Facilitate Transition

Oyster Habitat Creation


Hydrologic Restoration

600' of marl at Bell Island Swanquarter National Wildlife Refuge

1200' of marl or shell bag at Alligator River National Wildlife Refuge

100' of shell bag at Nag's Head Woods Preserve

Scientific Information

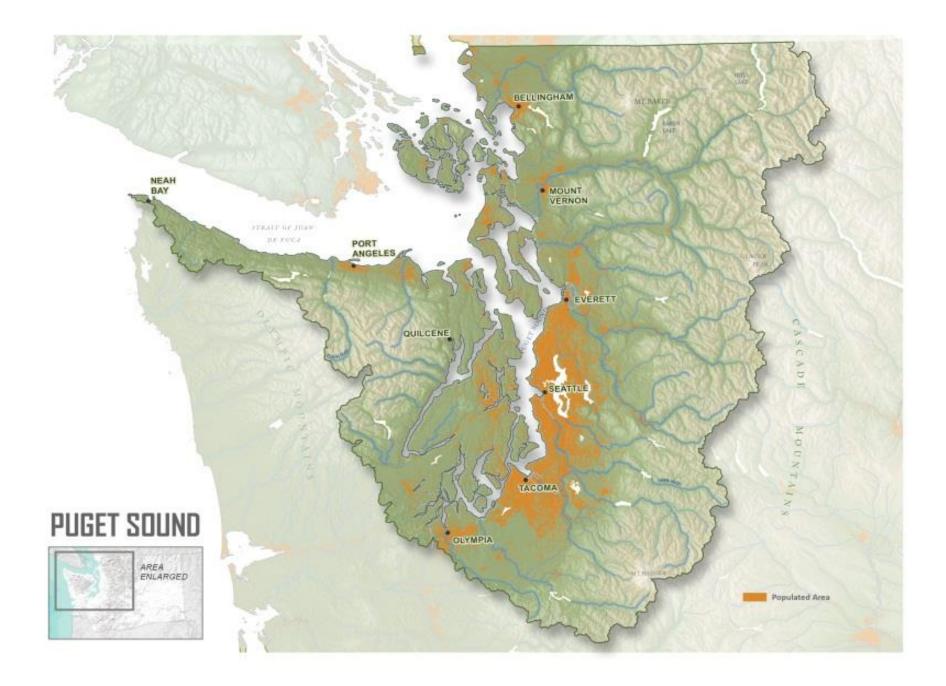
- O Monitoring component to oyster projects
- O Partnerships
 - O State Agencies
 - O Academic Researchers
 - O New Stakeholders
- Ability to leverage funding to achieve science-driven oyster habitat creation
- O Communicate effectiveness and scale

Credibility

Measuring biodiversity at reefs

Oyster dispersal research in Pamlico Sound

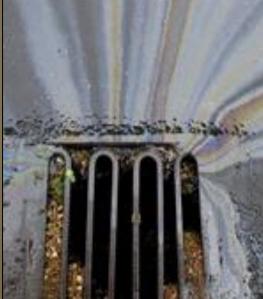
Control Site

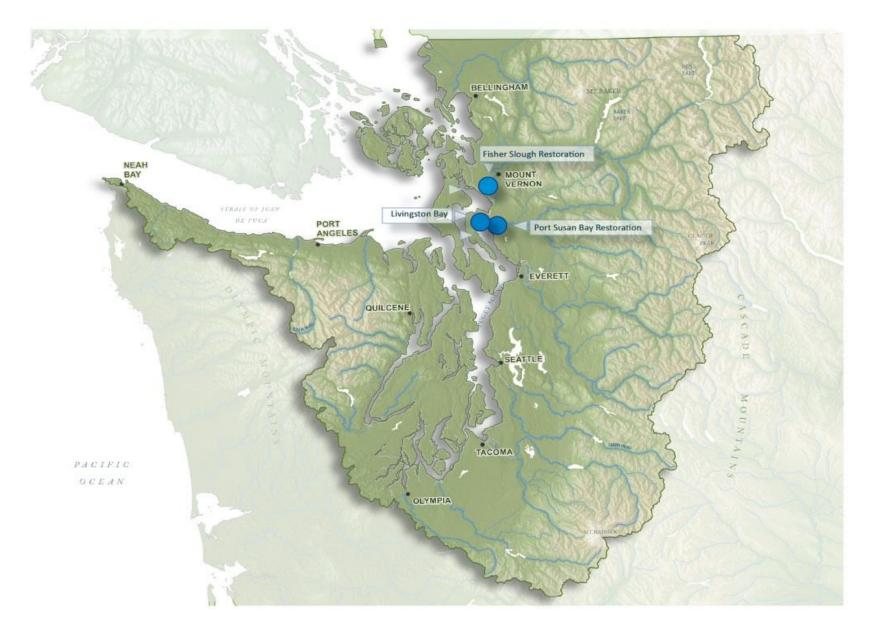

800' of Subtidal Reefs!

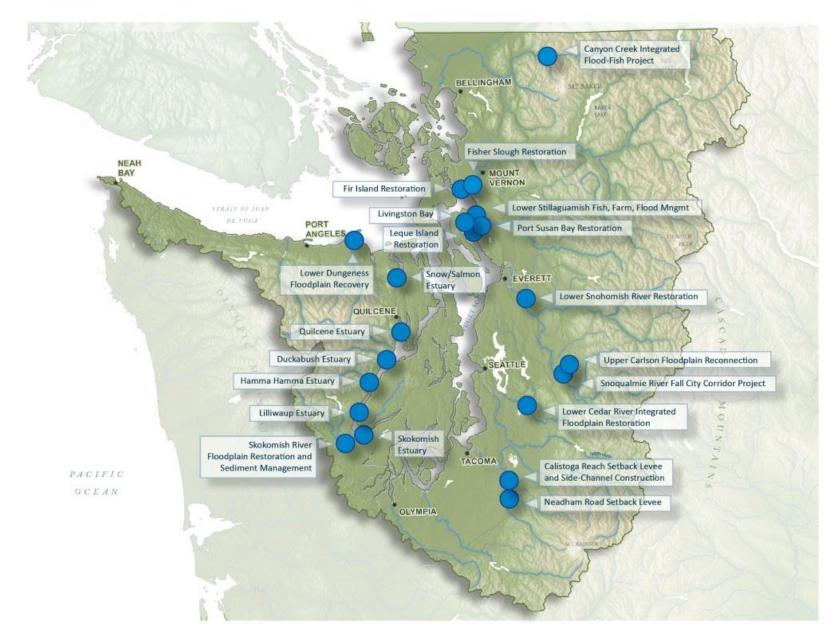
Moving restoration to the whole-system scale in Puget Sound, Washington

By Jenny Baker

Marine Aggregation, Feb 2014







TNC-Owned and Managed Floodplain and Estuary Projects

Applying Place-Based Lessons: Current Floodplain and Estuary Projects

Hawai'i Sucks!

And we are darn good at it. (And this title was NOT my idea....)

> Eric Conklin Hawai'i Marine Science Director

Kāne'ohe Bay, Oahu

Kāne'ohe Bay

"A healthy, vibrant, sustainable Kane'ohe Bay"

Strategies:

Short- to mid-term

- Supersucker
- Urchins

Mid- to long-term

- Better land-use practices
- Effective fisheries management

Protecting nature. Preserving life."

"A healthy, vibrant, sustainable Kane'ohe Bay"

