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Abstract. Maps of fuels and fire regimes are essential for understanding ecological
relationships between wildland fire and landscape structure, composition, and function, and
for managing wildland fire hazard and risk with an ecosystem perspective. While critical
for successful wildland fire management, there are no standard methods for creating these
maps, and spatial data representing these important characteristics of wildland fire are
lacking in many areas. We present an integrated approach for mapping fuels and fire regimes
using extensive field sampling, remote sensing, ecosystem simulation, and biophysical
gradient modeling to create predictive landscape maps of fuels and fire regimes. A main
objective was to develop a standardized, repeatable system for creating these maps using
spatial data describing important landscape gradients along with straightforward statistical
methods. We developed a hierarchical approach to stratifying field sampling to ensure that
samples represented variability in a wide variety of ecosystem processes. We used existing
and derived spatial layers to develop a modeling database within a Geographic Information
System that included 38 mapped variables describing gradients of physiography, spectral
characteristics, weather, and biogeochemical cycles for a 5830-km2 study area in north-
western Montana. Using general linear models, discriminant analysis, classification and
regression trees, and logistic regression, we created maps of fuel load, fuel model, fire
interval, and fire severity based on spatial predictive variables and response variables
measured in the field. Independently evaluated accuracies ranged from 51 to 80%. Direct
gradient modeling improved map accuracy significantly compared to maps based solely on
indirect gradients. By focusing efforts on direct as opposed to indirect gradient modeling,
our approach is easily adaptable to mapping potential future conditions under a range of
possible management actions or climate scenarios. Our methods are an example of a standard
yet flexible approach for mapping fuels and fire regimes over broad areas and at multiple
scales. The resulting maps provide fine-grained, broad-scale information to spatially assess
both ecosystem integrity and the hazards and risks of wildland fire when making decisions
about how best to restore forests of the western United States to within historical ranges
and variability.
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INTRODUCTION

Wildland fire is a keystone ecosystem process af-
fecting many landscapes of the western United States.
It regulates succession by selecting and regenerating
plants, maintains biodiversity, and entrains ecosystem
and biogeochemical processes at multiple scales (John-
son 1992, Crutzen and Goldammer 1993, Swetnam and
Betancourt 1998). Fire regimes describe the historical
role of wildland fire in an ecosystem and integrate the
frequency, severity, and spatial distribution of fires for
specific landscapes over time (Mooney et al. 1981,
Agee 1993, Morgan et al. 2001). Since the late 19th
century, many forests in the interior western United
States have been altered by the systematic and com-
prehensive exclusion of wildland fire (Covington et al.
1994, Leenhouts 1998). This legacy of fire exclusion
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has perturbed natural fire regimes and resulted in ex-
cessive accumulations of forest fuels, as vegetation that
would have previously been consumed by fire remains
unburned (Arno 1976, Habeck 1985, Allen et al. 2002,
Keane et al. 2002a).

Wildland fire managers require spatially explicit,
comprehensive information on fuels and fire regimes
for long-term planning focused on restoring fuel and
fire regime condition in high-risk areas to within pre-
20th century ranges. Maps of fuels and fire regimes
based on gradient modeling can provide information
on the climatic or landscape variables and the poten-
tially complex interactions between these variables that
determine fire regimes at broad scales. While maps of
fuels and fire regimes provide key information for ef-
fective fire management and ecological restoration,
they exist for only a few areas, and standardized meth-
ods for economically and efficiently creating these
maps do not exist (Keane et al. 2001, Morgan et al.
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2001). Mapping fuels and fire regime at landscape
scales (1000s to 10 000s of km2) generally requires
advanced Geographic Information System (GIS) tech-
niques and complex statistical analyses (Keane et al.
2001, Morgan et al. 2001). The difficulty of creating
these maps is compounded by the complex spatial and
temporal dynamics of wildland fire. A combined ap-
proach integrating extensive field databases, multiple
sources of fire history information, remote sensing, and
biophysical modeling to map fuels and fire regimes is
recommended (Keane et al. 2001, Morgan et al. 2001).

Wildland fuels represent the biomass available for
fire ignition and combustion in wildland fires and are
the one parameter affecting wildland fire that humans
can control (Rothermel 1972). ‘‘Fuels’’ are defined as
the characteristics of live and dead biomass (e.g., mass
and density) that contribute to the spread and intensity
of wildland fire (Burgan and Rothermel 1984). Often,
the term ‘‘fuel load’’ is used to describe the compo-
sition and physical characteristics of fuel for an area.
However, adequate depiction of the fuel load is difficult
and often a generalized description of fuel properties
(the ‘‘fuel model’’) is used (Anderson 1982, Sandberg
et al. 2001). Fuel models represent the typical fire be-
havior or fuel condition for a specific site. Current fuel
models are limited to the prediction of fire behavior
because they do not include sufficiently detailed in-
formation on fuel loadings or fuel moistures needed
for fire effects calculations.

Most attempts at mapping fuels focus on mapping
fuel models (or some other comprehensive description
of fuels) using classifications of vegetation and bio-
physical setting (indices that integrate weather, topog-
raphy, and site characteristics; Burgan 1996, Keane et
al. 2001, Sandberg et al. 2001). There are many factors
that limit the ability to map fuels. Most passive re-
motely sensed data (e.g., Landsat-TM, AVHRR, MOD-
IS) are unable to detect surface fuels because these
sensors generally cannot penetrate forest canopies (La-
chowski et al. 1995). Even if airborne sensors could
penetrate the canopy, it is difficult to distinguish be-
tween surface and canopy fuel sizes and categories us-
ing standard image processing techniques (Keane et al.
2001). Accurate fuel mapping is also confounded by
the high spatial and temporal variability of fuels (Agee
and Huff 1987). Fuel maps (fuel loadings or fuel mod-
els) represent single instances in a physical template
affecting the spread and intensity of wildland fire that
changes constantly over time.

The ‘‘fire regime’’ of an area represents the temporal
variability in the physical characteristics and subse-
quent effects of wildland fire. Fire regimes are usually
defined in terms of fire frequency, severity, size, and
pattern. A fire regime is a general description of the
role of fire for a specific area or ecosystem; it refers
to the ‘‘nature of fires occurring over an extended pe-
riod of time’’ (Brown 1995, Morgan et al. 2001). Fire
regimes integrate complex interactions of fire, vege-

tation, climate, and topography (Agee 1993). The fire
regime for a specific landscape influences the structure
and abundance of fuel, thereby affecting fire behavior
and fire effects over time. In this paper, fire regimes
are described by fire interval and fire severity over the
last 100–400 years. These descriptors of fire regimes
are most important for predicting fire effects on land-
scapes and have been used in the majority of studies
evaluating fire regimes (e.g., Barrett et al. 1991, Brown
et al. 1994, Swetnam and Baisan 1996, Agee and Kru-
semark 2001, Morgan et al. 2001). Mean fire interval,
the average number of years between fires for an area,
is often used to quantify the frequency of fire for a
landscape. Mean fire interval is a main focus of most
research evaluating fire regimes because repeated fires
are important determinants of the successional status
of ecosystems and biogeochemical dynamics, and it is
possible to reconstruct long fire histories for many eco-
systems (e.g., Heinselman 1973, Arno 1980, Baisan
and Swetnam 1990, Niklasson and Granström 2000,
Heyerdahl et al. 2001).

Maps of historical fire intervals provide a temporal
context for current conditions. Current landscapes with
departures of one or more fire intervals have been used
to (1) identify areas of low ecosystem integrity (Swet-
nam et al. 1999, Quigley et al. 2001), (2) identify areas
with accumulating fuels (Brown et al. 1994, Hardy et
al. 2001), (3) develop strategic fire management plans
(Hardy et al. 2001, Morgan et al. 2001), and (4) pri-
oritize areas for ecological restoration (Hardy and Arno
1996, Allen et al. 2002). Maps of fire intervals are also
valuable for calibrating, parameterizing, and validating
landscape–fire models that focus on how changing cli-
mate or management strategies will affect fire regimes
and vegetation dynamics (vanWagtendonk 1985, Keane
et al. 1996, Schmoldt et al. 1999).

Many efforts at mapping fire intervals across land-
scapes have involved expert systems that assign ag-
gregated point estimates of fire frequency (e.g., from
fire-scarred trees) to mapped vegetation types (Barrett
et al. 1991, Brown et al. 1994, Swetnam and Baisan
1996). Uncertainties and biases that result from op-
portunistic sampling and fires that fail to scar trees limit
the utility of some point-based data for extrapolating
results over broad areas or entire vegetation types (Bak-
er and Ehle 2001). There are a few recent, notable
exceptions to this heuristic method for mapping land-
scape-scale fire history using point samples (McKenzie
et al. 2000, Niklasson and Granström 2000, Heyerdahl
et al. 2001, Falk 2003). Area frequencies or rotation
periods are an expression of fire interval for a specific
area and incorporate observed or reconstructed spatial
patterns of fires. Fire rotation periods are usually es-
timated using stand age analysis (Johnson 1992, Agee
1993), remote sensing (Minnich 1983, Chou and Min-
nich 1990), or archival fire occurrence databases
(McKelvey and Busse 1996, Rollins et al. 2001). The
accuracy of mapped rotation periods is limited by the
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difficulty of reconstructing old fire perimeters; the qual-
ity, extent, and difficulty of analyzing remotely sensed
data; and the spatial and temporal precision and ac-
curacy of fire occurrence databases (Morgan et al.
2001, Rollins et al. 2001).

In order to make inferences about how repeated fires
affect ecosystems, it is important to know about ‘‘fire
severity’’: the relative effects of an individual fire on
an ecosystem. Fire severity has been evaluated in terms
of a myriad of fire effects, including post-fire change
in vegetation, soils, or hydrology (Wells et al. 1979,
Ryan and Noste 1985, Lenihan et al. 1998, Robichaud
2000). Direct effects of fire severity include fuel con-
sumption, crown scorch, soil heating, and bole charring
(Reinhardt et al. 1997). The indirect effects of fire se-
verity include tree mortality, change in landscape com-
position, and change in forest structure. These effects
are influenced by a host of external factors, such as
antecedent plant stresses, topography, soil properties,
and disturbance history. In most cases, fire severity is
quantified as the degree of vegetation mortality after a
wildland fire (Agee 1993). For example, nonlethal fires
burn in surface fuels without killing the overstory;
.70% of the stand basal area and/or .90% of the
overstory canopy cover remain after the fire (Morgan
et al. 1996). Stand-replacing burns kill the majority of
overstory vegetation and include lethal surface fires
and active crown fires. In stand-replacement fires,
,20% of the stand basal area and #10% of the canopy
cover of overstory vegetation remain after the fire
(Morgan et al. 1996). Mixed-severity fires include com-
binations of nonlethal and stand-replacement fires
mixed in space and time. Passive crown fires (i.e., oc-
casional torching of individual or groups of trees) and
underburns are common in mixed severity burns. Typ-
ically, mixed-severity fire regimes are used to describe
areas that experience fires of different severities over
time (e.g., a stand-replacement fire followed by a non-
lethal fire; Agee 1993, Morgan et al. 1996).

Most approaches for mapping fire severity after wild-
land fires use remotely sensed imagery (e.g., aerial pho-
tographs or satellite imagery) to assess vegetation mor-
tality or landscape effects resulting from the hetero-
geneity of fire patterns (White et al. 1996, Medler and
Yool 1997; C. H. Key and N. C. Benson, unpublished
manuscript [‘‘The normalized burn ratio (NBR)’’;
available online]2). Mapping potential fire severity is
more difficult, as it requires spatially explicit maps of
weather and fuels (Burgan 1996, Bradshaw and An-
drews 1997, Andrews and Williams 1998). Many mod-
els of potential fire severity involve coarse classifica-
tions of fire environment (e.g., fuel characteristics,
weather, and topography), characteristics (e.g., igni-
tion, spread, intensity, and extinction), and potential
effects of fire (Bradshaw and Andrews 1997, Andrews
and Williams 1998, Andrews and Queen 2001). Data

2 URL: ^http://www.nrmsc.usgs.gov/research/ndbr.htm&

quality, methods for spatially extrapolating data from
networks of weather stations, and the low spatial res-
olution of satellite imagery for distinguishing fuel char-
acteristics have limited efforts to map potential fire
severity for fire management or ecological applications
(e.g., fuels mitigation or ecosystem restoration; An-
drews and Queen 2001). Together, mapped fire interval
and potential fire severity represent an integration of
factors that determine wildland fire regimes.

In this paper, we describe an approach that integrates
extensive ecological field sampling, remote sensing,
ecosystem simulation, and biophysical gradient mod-
eling to map fuels and fire regimes across a large (5830
km2) study area in northwestern Montana, USA. Our
objectives are to evaluate the effectiveness of using
indirect, direct, resource, and functional gradient mod-
eling (Austin and Smith 1989, Müller 1998) along with
a variety of multivariate statistical techniques for map-
ping fuel load (in kilograms per square meter), fuel
model (Anderson 1982), fire interval (years), and po-
tential fire severity (nonlethal, mixed, and stand re-
placement). Direct gradients, such as temperature and
humidity, have direct physiological impact but are not
‘‘consumed,’’ by vegetation (Austin and Smith 1989).
On the other hand, indirect gradients such as slope,
aspect, and elevation have no direct physiological in-
fluence on plant dynamics (Austin and Smith 1989).
The energy and matter used or consumed by plants,
such as light, water, and nutrients, define resource gra-
dients. Functional gradients describe the response of
the biota to indirect, direct, and resource gradient types
(Müller 1998). Included in this gradient category would
be biomass and leaf area index (Müller 1998). The main
strengths of our mapping approach include: (1) a stan-
dardized, repeatable method for sampling and database
development for fuel and fire regime mapping; (2) a
combination of remote sensing, ecosystem simulation,
and gradient modeling to create predictive landscape
models of fuels and fire regimes; (3) a robust, straight-
forward, statistical approach and accuracy assessment;
and (4) the use of indirect, direct, resource, and func-
tional gradient analysis for mapping fuels and fire re-
gimes.

METHODS

Study area

The 5830-km2 Kootenai River Basin (KRB) in north-
western Montana is bounded by Canada to the north,
the Whitefish Range to the east, the Yaak River wa-
tershed to the west, and the Clark Fork River watershed
to the south (Fig. 1). Climate is mostly modified mar-
itime with mild, wet winters and warm, dry summers
(Finklin 1987). The study area is a very productive
northern Rocky Mountain landscape containing west-
ern hemlock (Tsuga heterophylla) and western red ce-
dar (Thuja plicata) at low elevations on moist to wet
sites (northerly aspects and stream bottoms). Mixed
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FIG. 1. The 5830-km2 Kootenai River Basin study area in northwestern Montana, USA.

conifer forests of Douglas-fir (Pseudotsuga menziesii),
western larch (Larix occidentalis), lodgepole pine (Pi-
nus contorta), grand fir (Abies grandis) and, to some
extent, western white pine (Pinus monticola) dominate
the productive midelevation zones. Lower subalpine
areas usually consist of subalpine fir (Abies lasiocar-
pa), spruce (Picea engelmannii and Picea glauca),
mountain hemlock (Tsuga mertensiana), and lodgepole
pine. Upper subalpine forests are mostly whitebark pine
(Pinus albicaulis), subalpine fir, spruce, and small
amounts of alpine larch (Larix lyalli). Permanent shrub
and herblands are present at the highest elevations
(.2000 m). A great portion of forested lands (;40%)
in the Kootenai study area has been logged in the recent
past (1950 to the present). Historically, fires were most
frequent in dry valley bottoms in the northeastern half
of the study area characterized by mixed Douglas-fir/
ponderosa pine forests (Leavell 2000). Fires were least
frequent in low, mesic forests comprised of western red
cedar and western hemlock in the western portion of
the KRB and high-elevation lodgepole pine/subalpine
fir/spruce forests in the Cabinet and Yaak Mountains
(Leavell 2000). Large, stand-replacement fires oc-
curred infrequently in the KRB prior to European set-
tlement (Arno 1980).

Sampling methods

A hierarchically structured, relevé-based sampling
design was developed to inventory important ecosys-
tem characteristics across the study area (Jensen et al.
1993; Fig. 2). Replicated, systematic sampling tech-

niques were not employed in this study because the
objective was to characterize ecological gradients for
mapping purposes rather than to quantitatively describe
plant composition for comparison or monitoring pur-
poses. The field database was developed for five main
objectives, (1) to serve as reference data for the clas-
sification of satellite imagery, (2) to provide initiali-
zation and parameterization data for simulation models,
(3) to represent direct measurements of predictor var-
iables along a range of environmental gradients, (4) to
serve as response variables in predictive landscape
models, and (5) to provide reference data for accuracy
assessment of input data layers and resulting maps.
Detailed description of this hierarchical sampling strat-
egy may be found in Keane et al. (2002b).

Sampling locations were based on distributions of
ecosystem processes across the KRB at multiple spatial
scales (Gillison and Brewer 1985; Fig. 2). Landscape
composition and function were represented using a set
of environmental surrogates (elevation, mean annual
precipitation, mean annual temperature, existing veg-
etation, and habitat type) mapped prior to sampling and
easily identified in the field. Spatial data describing
these surrogates were created using ecosystem simu-
lation, GIS modeling, and expert systems (Quigley et
al. 1996). We assumed that the surrogate variables se-
lected for landscape stratification in this study would
adequately represent the myriad of other ecological
processes (e.g., carbon budget, hydrological cycle, ni-
trogen cycle) that potentially influence the spatial dis-
tribution of fuels and fire regimes.
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FIG. 2. Levels in the hierarchical sampling stratification used along biophysical gradients in the Kootenai River Basin.
Fourth-code and sixth-code refer to Hydrologic Unit Codes, a nested classification of watersheds and subbasins. Sixth-code
watersheds are nested within fourth-code watersheds. Subbasins were selected for sampling based on climate and physiography
data from the Interior Columbia River Basin Ecosystem Management project. Plot polygons were delineated using aerial
photography, and matrix worksheets were used to assure that plots represented the variability within subbasins.
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The KRB was divided into ‘‘subbasins’’ based on
watersheds delineated at the sixth-code level (Fig. 2).
Fourth-code and sixth-code refer to Hydrologic Unit
Codes, a nested classification of watersheds and sub-
basins (Quigley et al. 1996). Sixth-code watersheds are
nested within fourth-code watersheds. Subbasins were
selected for sampling based on climate, physiography,
and accessibility. Mean annual precipitation and tem-
perature maps (1-km2 resolution) represented climate
for determining the subbasins to sample (Quigley et al.
1996; Fig. 3). Physiography was mapped using regional
delineations of subsections (Bailey 1995), land type
associations (J. A. Nesser and G. L. Ford, unpublished
manuscript), and STATSGO soil data layers (Soil Con-
servation Service 1991). Accessibility was assessed
from digital road and trail data obtained from the Koo-
tenai National Forest Headquarters (Libby, Montana,
USA). Combinations of climate and physiographic data
served as surrogates for approximating the distribution
of ecosystem processes related to landscape compo-
sition, structure, and function (Booth et al. 1989, Ste-
phenson 1998). Twelve subbasins were selected for
sampling based on these criteria (Fig. 2).

The next level in the hierarchical sampling scheme
was the delineation of ‘‘plot polygons’’ along gradsects
within subbasins. ‘‘Gradsects’’ are transects that tra-
verse diverse environmental conditions (Gillison and
Brewer 1985, Bourgeron et al. 1994; Fig. 2). Plot poly-
gons, defined as areas with homogeneous ecological
conditions (Fig. 2), were selected to represent impor-
tant ecosystem processes (e.g., productivity) within the
selected subbasins, and they guided the process of plot
location in the field. Aerial photos, digital orthophoto
quadrangles, and 7.5-minute topographical maps were
used to detect areas of similar elevation, aspect, ex-
isting vegetation, and structural stage along each grad-
sect within the subbasins selected for sampling. Matrix
worksheets and field maps of sample plots by elevation,
aspect class, existing vegetation, and structural stage
were used to balance plot polygon sample locations
across major biophysical and disturbance gradients
within each sampled subbasin.

Georeferenced ‘‘macroplots,’’ the finest sampling
units, were established within each delineated plot
polygon to evaluate stand characteristics (Fig. 2). It
was assumed that ecological conditions within a ma-
croplot were representative of ecological conditions of
the entire plot polygon (Mueller-Dombois and Ellen-
burg 1974). These circular, 0.04-ha macroplots were
established $50 m from any edge that represented a
distinct boundary between cover types or structural
stages. Modified and standardized ECODATA methods
were used to sample ecological characteristics within
the macroplot. ECODATA consists of a wide variety
of sampling methods, plot forms, databases, and anal-
ysis programs that may be integrated to design specific
inventory and analysis application (Keane et al. 1990,
Jensen et al. 1993).

Details of the sampling procedures are presented in
the ECODATA handbook (Keane et al. 1990, Jensen
et al. 1993) and only an overview will be discussed
here (Table 1). Variables measured at each plot included
elevation, aspect, slope, soil characteristics, and habitat
type (Pfister et al. 1977). Geographical position was
recorded using a global positioning system. Cover and
height of all vascular and nonvascular (mosses and li-
chens) plant species were estimated using plant com-
position methods (Keane et al. 1990, Jensen et al.
1993). Fuels were described using the ECODATA pro-
cedures recording fuel loadings, Anderson fuel model
(Anderson 1982), and live fuel, dead fuel, duff, and
litter depths. Ecophysiological measurements were tak-
en using specialized methods developed for this study.
These data included leaf area index, leaf longevity by
tree species, soil water holding capacity, and fire re-
gime classification. Eight crews of two people each
collected data on 372 plots during four 10-day field
campaigns. Measurements requiring extensive exper-
tise such as fire regime and soil characterization were
performed by two highly trained people to ensure con-
sistency in estimations.

ECODATA disturbance history methods (Keane et
al. 1990, Jensen et al. 1993) were used to estimate fire
interval for three general fire severity classes: nonlethal
surface fire, mixed-severity fire, and stand-replacement
fire. An experienced fire ecologist determined fire in-
tervals at each plot to insure consistency of estimations.
Fire intervals were estimated for each plot based on
age structure and other historical evidence of fire (e.g.,
fire scars, charred woody debris, etc.). Fire intervals
were estimated for nonlethal fire regimes by searching
the plot polygon and surrounding areas for fire scarred
trees. Where available, fire scars were sampled using
a chain saw and fire interval estimated using ring counts
(Arno and Sneck 1977). For areas with mixed-severity
fire regimes, fire return intervals were based on age
structure within each stand. Fire intervals for both
mixed-severity and stand-replacement fire regimes
were estimated by evaluating age differences between
tree cohorts using increment cores and tree-ring counts
(Arno and Sneck 1977). The period of record for these
estimates varied depending on disturbance or land use
history of each plot. In many cases, previous distur-
bances or land use practices had consumed all but the
most recent evidence of past fires. In these cases, fire
intervals were estimated based on evidence of histor-
ical fire on stump surfaces, stand successional status,
tree ages in adjacent stands, and nearby evidence of
past fires. Estimated fire intervals were assumed to rep-
resent fire regimes in the study area over the last 100–
400 years.

Spatial and ECODATA field databases

Predictive landscape modeling requires high quality
spatial data to serve as predictor variables over the
entire study area (Franklin 1995). For this study, a GIS
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FIG. 3. Panel A: Climate data used for selecting subbasins for sampling. Colors represent different permutations of mean
annual temperature and precipitation. Panel B: Landscape polygons used for extrapolating simulation output across the entire
Kootenai River Basin. Classes were based on cluster analysis of plot data using percent cover of dominant tree species.
Developed areas, snow and ice, and areas covered in cloud were removed from consideration and masked from the final
maps. Polygons were delineated using fuzzy classification techniques.
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TABLE 1. List of measured, summarized, and simulated data in the ECODATA field database.

Data level Database name Description Reliability

Field data location linkage
general data
disturbance history
plant composition
downed woody
tree data
disease and insects
optional data

geographical information
general site and vegetation information
record of all disturbance events
species cover and height by size class
fuel information
individual tree measurements
insect and pathogen information
ecosystem and biophysical information

highest

Summarized data fuels
tree and stand data

computed fuel loadings
computed stand and tree characteristics

highest

Parameter data GMRS-BGC parameters ecophysiological parameters for Gradient Modeling
Remote Sensing–Biological Geochemical Cycles
(GMRS-BGC)

moderate

BGC initialization WX-
GMRS initialization

initializations for GMRS-BGC inputs and parame-
ters for Weather–Gradient Modeling Remote
Sensing (WX-GMRS) program

Simulated data GMRS-BGC output file
WX-GMRS output file

mean annual output from GMRS-BGC
summarized simulated weather from WX-GRMS

lowest

Notes: Information reliability is a qualitative assessment based on how far the data are removed from measured data.
GMRS-BGC and WX-GMRS are mechanistic biogeochemical and weather models used for mapping direct and resource
gradients.

containing 38 data layers describing physiographic,
spectral, weather, and ecophysiological gradients was
compiled to serve as landscape-scale variables in sta-
tistical models predicting fuels and fire regimes over
the KRB (Table 2). These 38 variables were selected
to represent important ecological gradients that either
influence or are affected by different fuel assemblages
and fire regimes based on a preliminary analysis of the
field data. Examples include the effects of aspect (az-
imuth) and slope (percentage) because they relate to
the transfer of heat energy from flaming fronts, and
precipitation and temperature effects on fuel assem-
blages and antecedent moistures. Spectral gradients can
provide information about the biomass available for
combustion. Each spatial data layer in this study was
compiled as an Arc/Info grid in the UTM projection
(zone 11), using the NAD1927 datum (Arc/Info version
7.2.2, Environmental Systems Research Institute, Red-
lands, California, USA).

The physiographic gradient layers (Table 2) of ele-
vation (in meters), aspect (azimuth), slope (percent-
age), profile curvature (curvature along the direction
of the slope), and planform curvature (curvature per-
pendicular to the direction of the slope) were derived
from Digital Elevation Models (DEMs) obtained from
the National Elevation Database (available online).3

Soil depth and soil texture data (percentages of sand,
silt, and clay used in simulation modeling) were de-
rived from field data, DEMs, STATSGO soil data, and
hydrological modeling (Beven and Kirkby 1979, Soil
Conservation Service 1991, Zheng et al. 1996).

We used Landsat-Thematic Mapper 5 (TM5) satellite
imagery obtained from the Earth Resources Observa-
tion Systems (EROS) Data Center in August of 1995
to represent spectral gradients in the Kootenai River

3 URL: ^http://edcnts12.cr.usgs.gov/ned/default.asp&

Basin in two ways (Table 2). First, the TM5 scene was
used to derive raw reflectance, spectral transforma-
tions, and ancillary parameters as spatial predictor var-
iables for mapping fuels and fire regimes. At-sensor
reflectance (REFLC1-REFLC7), spectral principle
components (PCA1, PCA2, and PCA3), Kauth-Thomas
transformations (BRIGHT, GREEN, WET), Modified
Normalized Difference Vegetation Index (MNDVI),
and Leaf Area Index (LAI) were derived from the im-
agery and used as predictor variables in models of fuels
and fire regime (Kauth and Thomas 1976, Markham
and Barker 1986, Nemani et al. 1993).

The TM5 imagery was used to delineate ‘‘landscape
polygons,’’ an additional landscape unit that was used
to spatially extrapolate many mechanistically simulated
weather and biogeochemical variables across the entire
study area (Fig. 3). In this regard, landscape polygons
represented a simulation unit, rather than a sampling
unit (plot polygons). There is one-to-one correspon-
dence between macroplots and plot polygons and one-
to-many correspondence between macroplots and land-
scape polygons. To delineate landscape polygons, ma-
croplots were clustered into nine ecologically distinct
classes (Fig. 3). Macroplots representing each class
were used as a spectral signature database, along with
the satellite imagery, elevation, and aspect in a super-
vised classification routine based on fuzzy algorithms
within the Earth Resource Data Analysis System (ER-
DAS) Imagine image processing software (version 8.4,
Earth Resource Data Analysis System, Atlanta, Geor-
gia, USA; Fahsi et al. 2000; Fig. 3). Accuracy for the
resultant landscape polygon classification for extrap-
olation of simulation results was 67% (K̂ 5 0.56).

Three mechanistic ecosystem models were used to
simulate weather and ecophysiological gradients for
each landscape polygon over the entire KRB landscape.



February 2004 83MAPPING FUELS AND FIRE REGIMES

TABLE 2. Spatial data layers representing physiographic, spectral, weather, and biogeochemical variables used to map fuels
and fire regimes over the entire Kootenai River Basin.

Layer type
Layer name Description Source

Physiographic
DEM
SLOPE
ASPECT
CURVE
PLANpCURVE

digital elevation model
slope, in percent, derived from DEM
direction of exposure in azimuths
relative concavity/convexity
curvature in the direction of slope

USGS†
USGS†
USGS†
derived‡
derived‡

PSAND*
PSILT*
PCLAY*
SDEPTH

percent of sand in soil
percent of silt in soil
percent of clay in soil
depth to bedrock

Soil Conservation Service (1991)
Soil Conservation Service (1991)
Soil Conservation Service (1991)
derived (Zheng et al. 1996)

Spectral
REFLC1
REFLC2
REFLC3
REFLC4
REFLC5

TM5 At-sensor reflectance, band 1
TM5 At-sensor reflectance, band 2
TM5 At-sensor reflectance, band 3
TM5 At-sensor reflectance, band 4
TM5 At-sensor reflectance, band 5

derived (Markham and Barker 1986)
derived (Markham and Barker 1986)
derived (Markham and Barker 1986)
derived (Markham and Barker 1986)
derived (Markham and Barker 1986)

REFLC7
PCA1
PCA2
PCA3
BRIGHT

TM5 At-sensor reflectance, band 7
principal component #1 of TM5 bands
principal component #2 of TM5 bands
principal component #3 of TM5 bands
Kauth-Thomas transform of TM5 bands

derived (Markham and Barker 1986)
derived§
derived§
derived§
derived (Kauth and Thomas 1976)

GREEN
WET
LAI
MNDVI

Kauth-Thomas transform of TM5 bands
Kauth-Thomas transform of TM5 bands
leaf area index (m2/m2)
modified normalized difference vegetation index

derived (Kauth and Thomas 1976)
derived (Kauth and Thomas 1976)
derived (Nemani et al. 1993)
derived (Nemani et al. 1993)

Weather
PET
PPT
SRAD
TAVE
TDEW

mean annual potential evapotranspiration (m)
mean annual precipitation (cm/yr)
mean annual daily solar radiation (kJ m22 day21)
mean annual average temp. (8C)
mean annual dewpoint temp. (8C)

derived (WX-GMRS)
derived (WX-GMRS)
derived (WX-GMRS)
derived (WX-GMRS)
derived (WX-GMRS)

TMIN
TMAX
TSOIL
VPD

mean annual minimum temp. (8C)
mean annual maximum temp. (8C)
mean annual soil temp. (8C)
mean annual vapor pressure deficit (mbar)

derived (WX-GMRS)
derived (WX-GMRS)
derived (WX-GMRS)
derived (WX-GMRS)

Ecophysiological
NPP
NEP
ER
AR
MR
OUTFL

net primary productivity (kg C/m2)
net ecosystem production (kg C/m2)
ecosystem respiration (kg C/m2)
autotrophic respiration (kg C/m2)
maintenance respiration (kg C/m2)
outflow (kg H2O/m2)

derived (GMRS-BGC)
derived (GMRS-BGC)
derived (GMRS-BGC)
derived (GMRS-BGC)
derived (GMRS-BGC)
derived (GMRS-BGC)

Notes: Data were either obtained from existing sources or derived using GIS, image processing software, or ecosystem
simulation programs. WX-GMRS indicates Weather–Gradient Modeling Remote Sensing, and GMRS-BGC indicates Gradient
Modeling Remote Sensing–Biological Geochemical Cycles.

† Available online, URL: ^http://edcnts12.cr.usgs.gov/ned/default.asp&.
‡ Derived using Arc/Info, version 7.2.2 (Environmental Systems Research Institute, Redlands, California, USA).
§ Derived using Imagine, version 8.4 (Earth Resource Data Analysis System, Atlanta, Georgia, USA).

These models were: DAYMET (Thornton et al. 1997),
WX-GMRS (Weather–Gradient Modeling Remote
Sensing; Keane et al. 2002b), and GMRS-BGC (Gra-
dient Modeling Remote Sensing–Biological Geochem-
ical Cycles; Running and Hunt 1993, Keane et al.
2002b). Each simulation model was parameterized us-
ing data representing site characteristics and ecophys-
iological rates and constants, the majority of which
were taken directly from the ECODATA field database.
Model parameters that were not sampled during the
field campaigns were taken from the literature or ex-
isting databases (see Keane et al. 1996). Each landscape

polygon was assigned a parameter list for initialization
of each simulation model (DAYMET, WX-GMRS, and
GMRS-BGC).

Weather was computed for each landscape polygon
using the DAYMET program developed by Thornton
et al. (1997). Daily weather values of maximum and
minimum temperature, relative humidity, precipitation,
and solar radiation (TMAX, TMIN, RH, precipitation,
and SRAD) are calculated across each study area using
physiographic relationships and adiabatic lapse rates to
extrapolate 20 years of weather data from eight weather
stations located in and around the study area. Outputs
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from DAYMET were used as input for WX-GMRS and
GMRS-BGC to create other spatial databases. WX-
GMRS was used to summarize daily weather sequences
computed by DAYMET into integrated measures of
local weather and climate (e.g., mean temperature, pre-
cipitation, and vapor pressure deficit) for each land-
scape polygon for the duration of the fire season in
northwestern Montana (May–October). WX-GMRS
summaries represent potentially useful predictive di-
rect gradients, such as potential evapotranspiration, soil
water potential, and vapor pressure deficit.

Important ecophysiological gradients were simulated
using GMRS-BGC, a modification of BIOME-BGC,
developed by Running and Hunt (1993) and Thornton
(1998). GMRS-BGC simulates fluxes of carbon, nitro-
gen, and water at the stand level using mechanistic
biogeochemical functions. GMRS-BGC was executed
for 250–350 years to allow conditions in the model to
equilibrate with input weather data (cycled every 20
years) and 100 more years to obtain mean annual out-
put. Output from WX-GMRS (May–October) and
GMRS-BGC (entire year) were summarized for each
landscape polygon, then compiled as separate spatial
data layers (raster grids). These layers served as pre-
dictive variables in the process of mapping fuels and
fire regimes. For example, DAYMET calculated daily
precipitation, temperature, and relative humidity for
each landscape polygon from 20 years of daily weather
data. WX-GMRS summarized these daily data to values
of precipitation, minimum and maximum temperature,
and relative humidity for the May–October fire season.
In another example, mean annual net primary produc-
tivity for each landscape polygon was calculated from
GMRS-BGC using input data derived from the ECO-
DATA field database and DAYMET weather simula-
tions for each KBR landscape polygon. These simu-
lated variables represent important landscape-scale
gradients used to predict spatial landscape character-
istics across each study area.

A hierarchically structured database was designed to
organize the complex information and different types
of data used to map fuels and fire regimes in this study
(Tables 1 and 2). Data collected in the field occupy the
top of the database structure, and (1) are actual mea-
surements of ecosystem characteristics, (2) represent
the most accurate and defensible data in the database,
and (3) provide the foundation of the predictive land-
scape modeling of fuels and fire regimes. Summaries
of the ECODATA field database occupy the next level
of the database; these are data generated from field
measurements that summarize characteristics of each
macroplot. For example, fuel loads (in kilograms per
square meter) are synthesized from the downed woody
inventories stored in the raw ECODATA field database.
Simulation model input and parameter data occupy the
third level in the database structure. These data were
computed from the field and from summary databases
to quantify the input parameters and initialization files

required by the set of three simulation models described
previously. The last and lowest level in the database
contains simulated spatial databases, which are sum-
marized outputs from these three simulation models.

Predictive gradient modeling

Our approach to mapping fuels and fire regimes con-
sisted of multiple integrated analyses and data sources
(Figs. 3 and 4). Fuel and fire regime information from
the ECODATA field database (macroplots) provided
information to be used as dependent or response var-
iables. Values from each of the 38 spatial predictor
variables (Table 2) were extracted for each macroplot
using a GIS; and, along with measured variables for
historical mean fire interval, general fire severity, fuel
loads, and fuel models, these data were compiled as a
separate model-building database.

To account for the effect of different units among
predictor variables and to facilitate extrapolation across
the study area landscape, we standardized macroplot
values for 38 spatial predictor variables to Z scores
with respect to the population mean and standard de-
viation. This procedure removed the weighting that re-
sults from differences in units and magnitudes between
predictor variables (Johnson 1998). Preliminary explo-
ration of the data with classification and regression
trees (CART; Breiman et al. 1984), scatterplots, and
histograms provided insights into the correlation and
covariance structure. This was helpful for identifying
erroneous values, statistical outliers, influential points,
and potential relationships. After removing 12 plots
due to erroneous data and grouping plots into fire in-
terval and fuel load categories, the model database was
partitioned into two parts: a model development set
and an independent validation set (Johnson 1998). We
used 75% of the data for model development and 25%
of the data as a validation set for evaluating model
performance and determining the degree to which mod-
el predictions could be extrapolated over the entire Ko-
otenai River Basin.

We used general linear models (GLM), discriminant
analysis, CART, and logistic regression to map fuel
loads, fuel models, historical fire interval, and fire se-
verity (Table 3). A GLM is a flexible statistical tech-
nique for predicting continuous response (dependent)
variables based on a collection of continuous predictor
(independent) variables (Johnson 1998). Discriminant
analysis classifies records into discrete groups by de-
veloping a quadratic function of the predictor variables
that captures the essential differences between groups
(Johnson 1998). The CART procedure, used as an an-
alog for regression, begins with the entire data set,
proceeds by sorting all of the n cases for each predictor,
and examines all n 2 1 ways to split the data in two.
For every possible split of each predictor variable, the
within-cluster sum of squares about the mean of the
cluster on the response variable is calculated. The pre-
dictor defines a split at a point that yields the smallest
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FIG. 4. Overview of the approach used to map fuels and fire regimes. Existing spatial data were used to stratify the study
area for field sampling. An extensive field database served as training data for image processing and was used to derive
spatial data layers and to parameterize ecosystem models; it also was the source of response variables for predictive landscape
models. Discriminant analysis along with 38 predictor variables was used to map fuels and fire regimes for the Kootenai
River Basin. Accuracy was assessed independently using a 25% holdout data set.

TABLE 3. Mapped components of fuels and fire regimes, along with corresponding statistical methods, response variable
classes, and important variables for developing each map component.

Map layer
Statistical

method Response type
Significant
variables

Fuel loads (kg/m2) GLM
discriminant
CART
logistic

continuous
discrete (L, low; M, medium; H, high)
discrete (L, low; M, medium; H, high)
binomial (L, low; H, high)

NDVI GREEN, SRAD,
OUTFL, PET

Anderson fuel model discriminant
CART
logistic

discrete (5, 8, 10)
discrete (5, 8, 10)
binomial (separate model for each)

REFLC4, TDEW,
TMIN, ELEV

Fire interval (yr) GLM
discriminant
CART
logistic

continuous
discrete (short, medium, long)
discrete (short, medium, long)
binomial (short, long)

OUTFL, PPT, REFLC4,
PCLAY

Fire severity discriminant
CART
logistic

discrete (nonlethal, mixed, stand replacement)
discrete (nonlethal, mixed, stand replacement)
binomial (nonlethal, stand replacement)

PPT, CURVE, OUTFL,
ELEV

Note: Anderson fuel models 5, 8, and 10 indicated different predicted fire behavior characteristics (Anderson 1982).

overall within-cluster sum of squares (Breiman et al.
1984). Logistic regression relates a binomial response
variable to several predictor variables that can be either
continuous or discrete (Christensen 1997). Logistic re-
gression transforms the response variable into a logit
variable (the natural log of the odds of the response
occurring or not) and applies maximum likelihood es-
timation. In this way, logistic regression estimates the
probability of specific events occurring.

Since fire interval and fuel loads were recorded at
each plot as continuous variables, they were the only
two response variables used in GLM. We used hier-

archical cluster analysis to identify natural groupings
and assign classes for fuel loads and fire interval. We
then analyzed these variables using discriminant (dis-
crete response), CART (discrete response), and logistic
regression models. We created a separate logistic model
for each fuel model. Single logistic models (binomial
response) were applied to fuel loads (low or high), fire
interval (short or long), and fire severity (nonlethal and
stand replacement; Table 3). We created two sets of
models for each statistical technique to evaluate the
degree to which the incorporation of direct, resource,
and functional gradients improved map accuracy over
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TABLE 4. Independently evaluated accuracies for models of fuels and fire regimes based purely on indirect variables
(physiography) and models based on the entire database.

Map layer

Accuracy

Models based on physiography (indirect) variables

Discriminant

% K̂

CART

% K̂

Logistic

% K̂

GLM

R2 P

Fuel loads
Fuel model
Fire interval
Fire severity

34.5
43.4
57.9
52.9

0
0.44
0.34
0.26

52.0
53.9
59.8
61.7

0.20
0.27
0.35
0.41

62.6
64.6
70.1
70.2

0.28
0.32
0.24
0.40

0.07
†

0.11
†

,0.01
†

,0.01
†

Notes: Maps based on discriminant, CART, and logistic regression were evaluated based on overall accuracy and the K̂
statistic. Accuracy for maps based on GLMs were evaluated based on R2 and P values. In all cases, accuracy assessment
was based on a 25% random holdout database. Overall accuracy for discriminant, CART, and logistic analyses is computed
as the percentage of total observations correctly classified (class 1 as class 1, class 2 as class 2, etc.). See Methods: Accuracy
assessment for more information.

† Accuracy not evaluated for this layer using this method.

models based purely on indirect gradients. Our hy-
pothesis was that models incorporating these gradients
representing ecosystem processes and biophysical set-
tings would improve mapping accuracy over models
based purely on topography.

Accuracy assessment

We assessed model accuracy by classifying the val-
idation database with statistical functions developed
using the model development database. Classification
accuracy was quantified for each spatial data layer with
two measures: the overall accuracy and the Kappa sta-
tistic (K̂), which measures the improvement in classi-
fication over that of pure chance by accounting for
omission and commission error (Congalton and Green
1998). Overall accuracy is computed as the sum of the
number of observations correctly classified (class 1 as
class 1, class 2 as class 2, etc.) divided by the total
number of observations (Story and Congalton 1986).
This is equivalent to the ‘‘diagonal’’ of a square con-
tingency table matrix divided by the total number of
observations described in that contingency table (Story
and Congalton 1986). Overall accuracy does not ac-
count for commission and omission errors (Congalton
and Green 1998). Thus, it is possible to have a high
overall accuracy, but also to have a high probability of
false negatives or false positives. The Kappa statistic
(K̂) incorporates errors of omission and commission in
classified data. It has been suggested to group contin-
uous data for evaluating accuracy; however, this would
be counter to our goal of representing fuel loads and
fire intervals continuously over the landscape. Because
of a small sample size, McKenzie et al. (2000) eval-
uated how well GLM predicted fire intervals using a
bootstrap estimate of prediction error. Our model da-
tabase was large; therefore, we evaluated accuracy of
the continuous models of fire interval and fuel load
maps by regressing measured and predicted fire fre-
quency values for the validation database.

RESULTS AND DISCUSSION

Predictive landscape mapping

Continuous maps of fuel loads based on GLM had
low accuracies (Table 4). However, general linear mod-
els predicted continuous fire interval reasonably well
(Fig. 5). In general, discrete vs. continuous maps have
more utility for developing management options for
specific parts of a landscape (Aronoff 1989). Discrete
ranges of fuel load classes and fire return intervals are
more reasonable targets for landscape restoration or
hazard reduction relative to individual, specific values
of fire interval or fuel load which vary widely at land-
scape scales. This, in addition to expense and time
constraints, is the main reason fire scars were not cross-
dated. The high temporal precision provided by de-
tailed crossdating was not warranted because it is un-
necessary to treat fire interval as a continuous variable
for most land and fire management planning. Overall
accuracies for discrete maps of fuel loadings, fuel mod-
el, fire interval, and fire severity varied from 51% to
81%, and K̂ varied from 0.20 to 0.54 (Table 4, Fig. 6).
Fire interval was mapped most accurately. Mean fire
season precipitation, mean annual outflow (i.e., the
amount of water available for runoff from a site), near
infrared reflectance, and clay content in soils were the
most important variables for discriminating between
short, medium, and long interval classes. Fuel loadings
were mapped least accurately (51%) with spectral de-
rivatives, mean annual outflow, and topographic cur-
vature being the most important for discriminating be-
tween areas with high, medium, and low amounts of
fuel. Overall, accuracies were reasonable although the
low accuracy of the maps, and the fuel maps in par-
ticular, may limit the utility of our specific approach
for future applications. Despite low accuracies, the
work presented in this paper represents a significant
step in the search for standard methods for mapping
fuels and fire regimes at high resolutions over broad
areas. It is important to note that a rigorous accuracy
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TABLE 4. Extended.

Accuracy

Models based on all variables

Discriminant

% K̂

CART

% K̂

Logistic

% K̂

GLM

R2 P

51.3
55.1
63.2
71.7

0.28
0.30
0.43
0.52

51.4
56.4
66.4
61.7

0.20
0.34
0.44
0.41

63.7
69.2
80.7
72.0

0.28
0.38
0.54
0.44

0.12
†

0.41
†

,0.001
†

,0.001
†

FIG. 5. Predicted vs. observed fire intervals (in years).
General linear models tended to overpredict short intervals
and underpredict long fire intervals. Panel A is based on all
predictor variables, and panel B is based solely on physio-
graphic variables; a is the slope of the regression line, and b
is the y intercept.

assessment is one of the strengths of our approach.
Many attempts at mapping fuels and fire regimes lack
quantitative accuracy assessment; therefore, it is dif-
ficult to evaluate our maps with regard to previous
research (Morgan et al. 1996, Keane et al. 2001, Mor-
gan et al. 2001).

Stratification and sampling strategies emphasized the
collection of data that represented gradients of land-
scape patterns and ecosystem processes across each of
these broad study areas. We feel that the main goals of
the sampling efforts were achieved. A main limitation
to the relevé approach used in this study was that plot
locations were subjectively determined at the time of
sampling. This is at least partially mitigated, however,
because the study area was stratified twice prior to
macroplot location using existing spatial biophysical
data. The effectiveness of this stratification was largely
based on the availability and quality of pre-existing
data for the study area. The limited availability of
broad-scale biophysical data could limit the utility of
our approach in future applications; however, many
comprehensive biophysical data sets exist, and more
are becoming available yearly.

Overall, each statistical technique performed well for
mapping fuels and fire regimes; no single statistical
technique consistently outperformed the others (Table
4). Many additional statistical techniques have been
applied to predictive landscape mapping. These include
general additive models, neural networks, Bayesian
modeling, and expert systems approaches. However,
none of these approaches have shown superior mapping
performance (Franklin 1995). It appears from our anal-
yses that, in future implementations of our approach,
researchers or landscape managers need not agonize
over selecting an appropriate statistical technique.
Rather, they should focus resources and efforts on as-
suring that: (1) field databases are sufficiently repre-
sentative of the landscape; (2) the gradients that com-
prise landscapes are represented by carefully compiled,
accurate spatial data; and (3) validation data are in-
dependent from the model development database.

Biophysical gradient modeling

Derivatives of satellite imagery that represented
functional gradients (gradients that describe the re-
sponse of the biota to other biophysical gradient types)
including MNDVI, near infrared reflectance, and
Kauth-Thomas Greenness, were important predictors
of fuel loads, fuel model, and fuel moisture (Table 5).
This indicates that an approach that integrates remote
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FIG. 6. Fuel model (panel A), fuel load (panel B), fire severity (panel C), and fire interval (panel D) over the entire
Kootenai River Basin. Panels A, B, and C were based on discriminant analysis and were 55.1%, 51.4%, and 71.7% accurate,
respectively, based on comparisons with independent field measurements. Panel D (fire interval) is portrayed as a continuous
variable and was based on a general linear model with R2 5 0.41 and P , 0.001.

sensing and gradient modeling is a significant improve-
ment over standard remote sensing techniques using
passive sensors for mapping characteristics of wildland
fire. Mechanistic ecosystem models were used to spa-
tially simulate weather and biogeochemical processes
known to govern fuel and fire regime dynamics. The
empirical/mechanistic DAYMET and WX-GMRS
models described the spatial distribution of important
fire weather variables based on a network of weather
stations arrayed across the KRB at a variety of ele-
vations. Mean fire season precipitation and temperature
were the most important weather variables for mapping
fuels and fire regimes.

A simulation approach characterized subtle changes
in mean fire season weather conditions that an indirect
modeling approach may fail to recognize. In an indirect
approach, latitude and elevation are often used as sur-
rogates representing gradients in precipitation and tem-

perature, which are assumed to change uniformly with
regard to these variables. In contrast, a simulation ap-
proach based on a large sample of real weather data is
much more likely to characterize unique weather char-
acteristics of a landscape such as rain shadows or storm
tracks. The most important biogeochemical variable in
predictive landscape models was outflow. This indi-
cates that water status is an important resource gradient
for discriminating fuels and fire regimes across land-
scapes (Clark 1989, Stephenson 1998). Ecosystem res-
piration and net primary productivity were also im-
portant predictors, indicating that fuels and fire regimes
are directly related to the rates of carbon cycle pro-
cesses (Olsen 1981, Ryan 1991, Price and Rind 1994).
A simulation approach adds information about direct,
resource, and functional gradients to predictive mod-
eling of landscape characteristics and, relative to mod-
els based purely on indirect gradients, more accurately
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TABLE 5. Important physiographic, spectral, weather, and
biogeochemical variables for mapping fuels and fire re-
gimes. See Table 2 for variable definitions.

Physio-
graphic Spectral Weather

Biogeo-
chemical

ELEV
SLOPE
CURVE
SDEPTH

REFLC4
REFLC2
GREEN
NDVI

PPT
TMAX
SRAD
TMIN

OUTFL
ER
AR
MR

represents the environmental factors that control land-
scape scale distributions of fuels and fire regimes.

Overall, the resource gradients precipitation and out-
flow and the functional gradients MNDVI and near-
infrared reflectance (both descriptions of plant bio-
mass) were the most important variables for mapping
fuels and fire regimes across the Kootenai River Basin.
It is well known that fuel loads and fire regime char-
acteristics are functions of site water status and pro-
ductivity (Clark 1989, Agee 1993, McKelvey and
Busse 1996, Stephenson 1998, Li 2000, Turner et al.
2001). Therefore, accurate spatial data representing
these direct gradients should be powerful predictors for
mapping landscape scale fuels and fire regimes. In ad-
dition, and as expected, spectral gradients representing
biomass were important functional gradients describing
the spatial distribution of fuels and fire regimes because
information derived from satellite imagery is directly
related to vegetation composition and biomass. In fu-
ture mapping efforts, we recommend an ecosystem sim-
ulation approach focused on energy budget, hydrology,
and carbon cycles.

Without exception, all predictive landscape models
were improved by the inclusion of direct, functional,
and resource gradient variables. Overall accuracy for
the maps based purely on indirect gradients was lower
than accuracies for maps based on the full set of pre-
dictive landscape variables (Table 4). This supports our
assertion that inclusion of predictor variables directly
related to fuels and fire regimes improves mapping ac-
curacies. We expected that elevation would be less im-
portant than the direct and resource gradients that it
traditionally represents in indirect gradient modeling.
This was true in most cases, but elevation was common
as a secondary or tertiary variable in most models,
particularly models of fire severity. This is likely due
to the high accuracy of mapped elevation relative to
the more moderate accuracy of simulated direct, func-
tional, and resource gradients. Ecosystem simulation
models have improved over the last decade for appli-
cation from regional to local spatial scales. As simu-
lation models improve, better spatial representation of
these important direct and functional gradients will be
possible. We expect that this will improve the accu-
racies of maps of fuels and fire regimes based on bio-
physical gradient modeling. Comparisons of maps
based on statistical models containing only indirect

gradients and maps based on models that include direct,
resource, and functional gradients highlight the im-
portance of variables representing ecosystem processes
in predicting the spatial distribution of fuels and fire
regimes.

Potential vs. existing conditions

Predictive landscape maps based solely on gradients
represent potential conditions. Maps that incorporate
functional gradients (e.g., remotely sensed biomass or
vegetation structure) help narrow in on existing con-
ditions by incorporating data for realized landscape
composition, structure, and function. In the maps pre-
sented here, direct, resource, and functional gradients
for mapping fuels and fire regimes were based on the
previous 20 years of weather data and derivatives from
single-date satellite imagery. Fire intervals represented
existing conditions to the extent that the previous 100–
400 years represented the stand history that led to the
existing stand condition. From an ecological perspec-
tive, fire regimes often evoke a much longer time period
(i.e., thousands of years); however the temporal extent
of most proxy fire history data (e.g., fire scars and age
structure) usually only extend back in time for a few
centuries. Mapped fuels and fire regimes represented
both existing and potential conditions based on the
combination of indirect, direct, resource, and function-
al gradient types in our approach. If fire regimes for a
given period of record are desired in future applications
of our mapping framework, then it is necessary to limit
estimates of fire interval to that period of record. For
example, if a map of pre-20th century conditions is
desired, then fire history evidence used for fire interval
estimates should be limited to pre-1900 data.

The generally low accuracy of maps of fuel loads
may result from expressions of both existing and po-
tential fuels loads in our final predictive landscape
models. Large discrepancies between potential and ex-
isting are possible in areas where landscape condition
has been affected by land use and fire exclusion. Pre-
dictive maps of fuel models were more accurate, prob-
ably because general descriptions of fuel models are
more static temporally than actual fuel loads. We
mapped existing and potential fuels together as proof
of concept for this paper. However, the integrated ap-
proach presented here could easily be modified to map
purely existing or potential conditions. Existing con-
ditions could be mapped by extracting date-specific
information about direct, resource, and functional gra-
dients from ecosystem simulations. Potential condi-
tions could be mapped by accumulating time-series
spectral information from imagery spanning a specific
period of record to describe a general expression of
functional gradients for the study area. If maps of pure-
ly potential conditions are desired, predictor variables
describing functional gradients should be excluded. Se-
ries of maps of potential fuels and fire regimes based
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on alternative weather scenarios could be produced to
investigate changes under different climate scenarios.

Mapping fuels and fire regimes

Many strategies have been applied to creating maps
of fire regimes, including classification, simulation, and
statistical modeling. Classification involves assigning
a fire regime description based on some expression of
fire history and different permutations of vegetation,
topography, and/or climate (e.g., Barrett et al. 1991,
Brown et al. 1994, Morgan et al. 1996). The simplicity
of applying the classification strategy to large areas is
the major strength of the classification approach. Clas-
sification fails to account for the spatial relationships
between areas with different potentials for burning
(e.g., ecotones). An additional limitation is that fire
regimes are sometimes not congruous with vegetation
classifications. Existing patterns of vegetation integrate
site characteristics and disturbance interactions, and
may not adequately represent the patterns of past fires.

Simulating fire regimes involves models that simu-
late fire behavior and effects over an extended period
of time. Outputs are summarized to generate maps of
fire regimes (e.g., Baker 1995, Li 2000). The major
strength of fire regime simulation is the integration of
all factors that determine fire regimes into one mod-
eling application. Models may be run many times to
evaluate a range of possible conditions or to assess
sensitivity by systematically changing one or more vital
attributes such as climate. The major drawback to sim-
ulation modeling is that models are often oversimpli-
fications of reality and fail to represent the complex
ecological processes and landscape patterns that de-
termine fire regimes. For example, fire occurrence and
spread may not simulate realistic fire patterns because
of lack of hourly weather or fine-scale fuels data. In
addition, imbedded succession pathways or competi-
tive hierarchies may fail to accurately represent the
changes in plant composition and structure after fires.

Statistical modeling is the most common approach
to mapping fire regimes. It most often involves the
summary of fire history databases (e.g., fire scar col-
lections, age structure data, and/or fire atlases), docu-
menting the date and extent of past fires into repre-
sentations of fire interval and severity (Arno 1976, Nik-
lasson and Granström 2000, Heyerdahl et al. 2001, Rol-
lins et al. 2001). This usually involves fitting
distributions of fire occurrence from a specific area to
a statistical distribution such as Poisson or Weibull
(Grissino-Mayer 1999, Reed 2000). This method is spa-
tially explicit; however, uncertainties exist based on
data quality and the appropriate spatial and temporal
resolution for ecological inference (Baker and Ehle
2001, Rollins et al. 2001). Compiling fire history da-
tabases requires a high degree of expertise, and can be
very expensive. The statistical strategy is simple, ef-
ficient, and the most accurate because it is ultimately
based on real field data; however, it is less compre-

hensive in capabilities for exploring interactions be-
tween causal factors than simulation modeling. Pre-
dictive models are possible and examples include sto-
chastic simulation (He and Mladenoff 1999) and the
incorporation of ecosystem process variables as pre-
dictor variables (McKenzie et al. 2000). Fire regime
mapping based purely on statistics is limited by the
cost of extensive field sampling, database quality, and
difficulty of untangling correlations from causality.

Our fire regime maps are based on an integrated ap-
proach that incorporates field data, remotely sensed
data, and biophysical modeling. Classifications of fire
interval and fire severity are based on evaluations of
stand age and structure at each macroplot. Cost was
prohibitive in terms of time and money to compile a
detailed fire history reconstruction for the entire Ko-
otenai River Basin. Classification of fire severity is
based on an expert opinion of the general fire severity
for a wildland fire for every macroplot. Maps represent
potential fire regime characteristics to the extent that
current stand conditions at each macroplot represent
the effects of past fires. Although fire regime classifi-
cations are subject to bias based on subjective sampling
and semiqualitative evaluations of fire interval and fire
severity, these maps provide an effective means for
wildland fire managers to evaluate the spatial distri-
bution of fire regimes at broad scales and for specific
areas. Our approach demonstrates the utility of using
extensive field inventories along with fire regime clas-
sifications, ecosystem simulation, and a relatively
straightforward statistical approach to mapping fire re-
gimes with respectable, independently assessed accu-
racies. The process described in this paper provides
more information than rule-based or expert system ap-
proaches because it is both data driven and incorporates
direct, functional, and resource gradient modeling.
However, our approach provides less detailed infor-
mation (e.g., time series of landscape change) than ap-
proaches based purely on simulation modeling (Keane
et al. 1996, He and Mladenoff 1999).

Application of maps of fuels and fire regimes in fire
and land management

Applications of fuel and fire regime maps in fire
management are numerous. For example, fuel load or
fuel model maps could be cross tabulated with potential
fire behavior, historical condition class, or vegetation
maps to make strategic decisions about fire suppression
resources or to prioritize specific areas for ecosystem
restoration or fuel mitigation. Fire interval maps could
be compared with maps of recent fires to determine
appropriate areas for prescribed burning. These data
may be evaluated individually, as with plans for a spe-
cific prescribed burning operation, or with other data
as part of a comprehensive landscape assessment, such
as revisions of a National Forest Plan. Our approach
provides landscape managers with the best available
scientific information about existing or potential fuels
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and fire regimes for addressing current issues in wild-
land fire management. Ecologists and fire managers
must carefully consider the spatial and temporal con-
text of naturally ignited fires, management-ignited
fires, and mechanical vegetation treatments to effec-
tively address issues related to managing wildland fire.
This type of enlightened, ecologically based manage-
ment of wildland fire requires comprehensive maps of
fuels and fire regimes over broad areas. The science of
restoration ecology and the practice of ecological res-
toration are evolving rapidly. As restoration efforts in-
crease, spatial information about the status of land-
scapes with regard to their historical conditions are
important for locating and prioritizing the expenditure
of a limited amount of resources.

These spatial inventories are critical for assessing
the risks to public safety and to ecosystem integrity
involved with wildland fire in a constantly changing
landscape. A consistent, standardized approach to da-
tabase development and mapping is requisite for ef-
fective communication and coordination of wildland
fire management information within and between both
government and nongovernment institutions.

Although the mapped fuels and fire regimes pre-
sented in this paper are not ideal, they effectively rep-
resent differences in fuels and fire regimes between
areas, and the spatial pattern of those relative differ-
ences is of great utility to fire managers and ecologists.
Our approach allows flexibility in gradient model de-
velopment, the potential for application at multiple
scales, and the ability to build predictive maps, but
possibly at the cost of limited implementation. Devel-
opment of the empirical predictive algorithms requires
expertise in statistical analysis, ecological interrela-
tionships, and database management, so implementa-
tion of this approach in other areas may require spe-
cialized personnel. However, these protocols can be
easily adjusted or formulated to generate new predic-
tive equations for new areas or new applications, and
they may be refined and modified as additional field
data or gradient GIS layers become available and they
may be easily implemented in standard statistical soft-
ware so that local statistical experts are not needed.

The need for comprehensive spatial data for fire
and land management

A legacy of fire exclusion, land use practices, and
widespread exotic species invasions has altered fire re-
gimes, fuel loads, and landscape composition, struc-
ture, and function (Pyne 1982, Swetnam and Baisan
1996, Rollins et al. 2001, Allen et al. 2002). As a result,
wildfire characteristics have changed significantly from
historical conditions (U.S. GAO 1999), sometimes with
catastrophic consequences. Recent examples of this in-
clude the Cerro Grande fire of 2000 that burned over
235 homes in Los Alamos, New Mexico, and the 2000
and 2002 fire seasons where nearly 8 million hectares
burned across the western United States with unprec-

edented suppression expenditures approaching $2 bil-
lion. In response to these conditions, the United States
Department of Agriculture (USDA) and the United
States Department of the Interior (USDI) have imple-
mented the National Fire Plan, a long-term program to
protect communities, ecosystems, and the lives of fire-
fighters and the public. Hardy et al. (2001) developed
coarse scale maps of fire regime condition class in
1999. These maps have been subjected to several re-
visions leading to widely varying estimates of the total
area at risk of catastrophic fire.

The USDA and USDI address the following issues
regarding implementation of the National Fire Plan
(USDA and USDI 2002): (1) Improving the resilience
and sustainability of forest and grasslands at risk; (2)
conserving priority watersheds, species, and biodiver-
sity; (3) reducing wildland fire costs, losses, and dam-
ages; and (4) ensuring public and firefighter safety. The
United States General Accounting Office (GAO), in a
report evaluating the USDA and USDI strategies for
implementing the National Fire Plan, found that gov-
ernment agencies lack adequate data for making in-
formed decisions and measuring agencies’ progress in
reducing fuels and restoring ecosystems (U.S. GAO
2002). This report highlighted the need for consistent,
comparable data and emphasized three main spatial
data needs: (1) Data for prioritizing wildland–urban
interface communities within the vicinity of federal
lands that are at high risk from wildland fires; (2) col-
lection and compilation of adequate data to expedite
the project planning process; and (3) data to evaluate
the effectiveness of treatments to reduce accumulated
fuels to decrease the reduce the risk of severe wildland
fire (U.S. GAO 2002). Prioritizing landscapes for treat-
ments is a unifying theme in the potential application
of maps of fuels and fire regimes to ecological resto-
ration or hazardous fuels mitigation. The work pre-
sented in this paper forms the foundation for a stan-
dardized, comprehensive suite of methods for devel-
oping broad-scale, high-resolution spatial data for eval-
uating ecosystem status, conserving watersheds and
biodiversity, and ensuring public and firefighter safety.
Information about current interagency efforts toward
broad-scale mapping of fuels and fire regimes for the
United Stated is available online.4

In the near future, broad-scale data will be available
that may replace some or all of the advanced spatial
data derivation and ecosystem simulation that was nec-
essary for this study. The launch of the US govern-
ment’s Terra satellite has ushered in a new era for nat-
ural resource mapping. The Moderate Resolution Im-
aging Spectroradiometer (MODIS) sensor on the Terra
satellite is linked to complex software that will generate
global maps of ecosystem variables such as net primary
production and evapotranspiration every day and over
the course of a growing season at 1-km2 resolution.

4 URL: ^www.landfire.gov&
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The National Elevation Database provides standardized
30-m digital elevation models for the entire United
States, and an updated version of STATSGO (state soil
geographic database) soil texture and soil depth data
will be available nationwide by 2002.5 The DAYMET
database, now available, provides summaries of an 18-
year daily record of temperature, precipitation, and so-
lar radiation (along with confidence intervals) at 1-km2

resolution for the continental United States.6 The
MODIS, STATSGO, and DAYMET products provide
excellent information for broad-scale landscape char-
acterization, and could potentially replace most of the
complex ecosystem simulation modeling used in this
study.

CONCLUSIONS

Integration of remote sensing, simulation modeling,
and gradient analysis proved to be an efficient, suc-
cessful approach for mapping broad-scale fuel and fire
regime characteristics. The ability of remote sensing
and ecosystem simulation to portray spatial distribu-
tions of direct, resource, and functional gradients en-
ables the efficient construction of reasonably accurate
maps that are critical for both fire managers and ecol-
ogists. No single statistical approach proved superior
for predictive landscape mapping. The maps created
improve our ability to compare fire regimes between
regions and facilitate communication between fire man-
agers and fire ecologists. A gradient-based approach to
mapping fuels and fire regimes enables the simulation
of potential changes in these factors and facilitates
comparison of past fire regimes with current conditions,
providing valuable information for evaluating the ex-
tent and rates of ecosystem change. The findings of this
study provide a framework for development of an stan-
dardized, automated system that creates maps of fuels
and fire regimes for any area using combinations of
field inventories, remotely sensed data, biophysical
data, and multivariate statistical approaches. This ap-
proach is appropriate for local to regional applications
and over a wide variety of ecosystems because maps
are based on predictive variables representing impor-
tant ecosystem processes that determine fuels and fire
regimes across multiple scales. Resulting maps provide
information to evaluate landscape and quantify the haz-
ards and risks of wildland fire when making decisions
about how best to restore forests of the western United
States to within historical ranges and variability.

Maps of fuels and fire regimes are critical for man-
aging broad-scale fire hazard that has resulted from
nearly a century of fire exclusion in the United States
and elsewhere. In recent years, the number of large,
severe wildfires has grown dramatically in the western
United States, increasing the risk of permanently and
comprehensively changing ecosystem dynamics and

5 URL: ^www.ftw.nrcs.usda.gov/stat data.html&
6 URL: ^www.daymet.org&

decreasing public and firefighter safety. It is estimated
that 73 562 393 ha of forested lands in the interior West-
ern United States are at risk of catastrophic wildfire
(Schmidt et al. 2002). This historically unprecedented
level of fire hazard has precipitated the realization that
a lack of comprehensive spatial data hinders the eval-
uation of fuels and fire regimes at landscape to regional
scales.

The methods presented in this paper provide a basis
for creating a standardized, interagency approach to
comprehensively and consistently mapping the char-
acteristics of wildland fire in almost any ecosystem at
broad scales. Existing vegetation communities repre-
sent a dynamic equilibrium with the frequency, sever-
ity, and spatial patterns of past wildland fires. The role
of wildland fire as a disturbance process is entrained
by climate, and complex feedbacks between vegetation
and fire processes make wildland fire an important me-
diator of climate–vegetation relationships. Fire man-
agers must consider climate variability, a legacy of fire
exclusion, and the hazards and risks of management
action when making decisions about how best to restore
forests of the western United States to within historical
ranges of variation.
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