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Abstract

This study projects future (e.g., 2050 and 2099) grassland productivities in the Greater Platte River Basin (GPRB)

using ecosystem performance (EP, a surrogate for measuring ecosystem productivity) models and future climate

projections. The EP models developed from a previous study were based on the satellite vegetation index, site

geophysical and biophysical features, and weather and climate drivers. The future climate data used in this

study were derived from the National Center for Atmospheric Research Community Climate System Model 3.0

‘SRES A1B’ (a ‘middle’ emissions path). The main objective of this study is to assess the future sustainability of
the potential biofuel feedstock areas identified in a previous study. Results show that the potential biofuel feed-

stock areas (the more mesic eastern part of the GPRB) will remain productive (i.e., aboveground grassland bio-

mass productivity >2750 kg ha�1 year�1) with a slight increasing trend in the future. The spatially averaged EPs

for these areas are 3519, 3432, 3557, 3605, 3752, and 3583 kg ha�1 year�1 for current site potential (2000–2008
average), 2020, 2030, 2040, 2050, and 2099, respectively. Therefore, the identified potential biofuel feedstock areas

will likely continue to be sustainable for future biofuel development. On the other hand, grasslands identified as

having no biofuel potential in the drier western part of the GPRB would be expected to stay unproductive in the

future (spatially averaged EPs are 1822, 1691, 1896, 2306, 1994, and 2169 kg ha�1 year�1 for site potential, 2020,
2030, 2040, 2050, and 2099). These areas should continue to be unsuitable for biofuel feedstock development in

the future. These future grassland productivity estimation maps can help land managers to understand and

adapt to the expected changes in future EP in the GPRB and to assess the future sustainability and feasibility of

potential biofuel feedstock areas.
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Introduction

Demand for biofuel products is expected to increase as

the world seeks alternatives to fossil fuels (Simpson,

2009; Schnepf & Yacobucci, 2010). The most common

biofuel product today in the United States is corn-based

ethanol (Solomon et al., 2007; Schnepf & Yacobucci,

2010); however, its development is limited because of

concerns about global food shortages, livestock and

food price increases, water demand increases for irriga-

tion and ethanol production, and negative environmen-

tal effects (e.g., soil erosion and water quality

impairment from pesticides and fertilizer) (Trostle,

2008; Searchinger et al., 2008; Gelfand et al., 2010; Pala,

2010; Pimentel, 2010; Schnepf & Yacobucci, 2010; Buyx

& Tait, 2011). Production of cellulosic ethanol [e.g., etha-

nol produced from switchgrass Panicum virgatum and

corn stover] is expected to increase in the future

(Mclaughlin & Kszos, 2005; Liebig, 2006; Sanderson

et al., 2006; Perrin et al., 2008; Vadas et al., 2008; Brac-

mort, 2010; Bracmort et al., 2010; Schmer et al., 2010;

Schnepf & Yacobucci, 2010; Guretzky et al., 2011; Monti

et al., 2012). The existing productive grasslands which

have not yet been farmed may be a good source for cel-

lulosic biofuel feedstock development (Gu et al., 2012).

In previous studies, we used vegetation condition

information from archival records of satellite data [i.e.,
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long-term time series of Normalized Difference Vegeta-

tion Index (NDVI) data], site geophysical and biophysi-

cal features (e.g., elevation, slope and aspect, and soils),

and weather and climate drivers to build ecosystem per-

formance (EP, a surrogate approach for measuring eco-

system productivity) models for dynamic monitoring of

ecosystem performance (DMEP) in several ecoregions in

the United States (Wylie et al., 2008, 2012; Gu & Wylie,

2010; Gu et al., 2012). Validation of EP and EP anomaly

results using ground observations (e.g., crop yield data,

percentage of bare soil, and stocking rate) demonstrated

the reliability of these EP models (Wylie et al., 2008,

2012; Gu & Wylie, 2010).

Moreover, in a previous study, we applied the DMEP

approach to identify grasslands that are potentially suit-

able for cellulosic biofuel feedstock (e.g., switchgrass)

development in the Greater Platte River Basin (GPRB)

(Gu et al., 2012). This previous study demonstrates the

power of EP models and biophysical information

extracted from the extensive satellite image archives to

identify future potential biofuel feedstock source areas.

Results from this previous study provide useful infor-

mation to land managers and decision makers to make

optimal land use decisions regarding cellulosic biofuel

feedstock development (Gu et al., 2012). However, this

previous research only represents the first step in identi-

fying grasslands that are potentially suitable for cellu-

losic feedstock production. Further evaluations and

assessments on the environmental sustainability (e.g.,

future climate-based projections of grassland productiv-

ity) of these biofuel feedstock areas are needed.

The development and the availability of the ‘Bias Cor-

rected and Downscaled World Climate Research Pro-

gramme’s (WCRP’s) Coupled Model Intercomparison

Project phase 3 (CMIP3) Climate and Hydrology Projec-

tions’ data archives (http://gdo-dcp.ucllnl.org/down-

scaled_cmip3_projections/) provides an opportunity for

scientists to assess potential future climate change

impacts on local ecosystems and to project future eco-

system performance based on the EP models. Therefore,

this study has the following three objectives. First, we

apply the existing EP model with future climate projec-

tions to project future (e.g., 2020–2099) expected EP

(EEP) for the GPRB grassland systems. The EP grass-

land model was developed in the previous study, and

the CMIP3 future climate projections under climate sce-

nario ‘A1B’ (intermediate emissions path) were used to

drive the predictions. Second, we assess the changes

(compared to the current conditions) and the trends of

the future grassland EEP in the GPRB. Third, we exam-

ine the future sustainability of potential biofuel and

nonbiofuel feedstock areas (Gu et al., 2012). The result-

ing future grassland productivity estimation maps can

help land managers to better understand the future

ecosystem function and service (under the ‘A1B’ climate

scenario) of the GPRB grassland systems and can be

used as a reference to assess the future sustainability

and feasibility of potential biofuel feedstock areas.

Materials and methods

Study area

This study is a continuation of our previous Greater Platte

River Basin research (Gu et al., 2012). The GPRB covers parts of

Wyoming, Colorado, South Dakota, Kansas, and most of

Nebraska (Fig. 1, within the black boundary) and includes a

broad range of plant productivity. The main vegetation cover

types are grassland (~50%) and cultivated crops (~30%) (Homer

et al., 2004). More detailed information on the GPRB can be

found in Gu et al. (2012).

Basic concepts

Ecosystem performance is a surrogate approximating ecosys-

tem productivity (Tieszen et al., 1997). EP is usually affected by

site geophysical and biophysical conditions (e.g., drainage, ele-

vation, slope, aspect, soils, and surface geology) (Viereck et al.,

1984, 1992; Saxon et al., 2005; White et al., 2005), climate and

weather conditions (e.g., precipitation and surface temperature)

(Rupp et al., 2000; Bunn et al., 2005; Kang et al., 2006; Kimball

et al., 2006; Dunn et al., 2007), ecological disturbances (e.g.,

wildfires and insect infestations) (Kang et al., 2006), and man-

agement activities (e.g., irrigation and grazing control) (Asner

et al., 2004; Launchbaugh et al., 2008). There are currently a

number of data sources available to monitor or inventory EP,

including flux tower observations, National Agricultural Statis-

tics Service (NASS) crop yield data, and Soil Survey Geo-

graphic (SSURGO) productivity. However, all of these have

limitations for dynamic monitoring of EP, including a lack of

continuous spatial coverage (e.g., sparse field observations),

low spatial resolution (e.g., county level statistics), spatial dis-

continuities (e.g., differences across state and county lines), and

significant time lags in the annual estimates (Gu et al., 2013).

Satellite-derived growing season averaged NDVI (GSN), which

has been used as a proxy for EP (Wylie et al., 1995; Tieszen

et al., 1997; Gu et al., 2013), can be reliably and consistently

mapped across time and space at a 250 m resolution. GSN

became an essential tool for measuring and monitoring EP over

large areas.

Ecosystem site potential is defined as the long-term ecosys-

tem productivity (i.e., long-term EP) (Wylie et al., 2008), and it

averages out variations in weather but accounts for spatial pat-

terns in long-term EP associated with site environmental and

climate conditions (Wylie et al., 2008; Gu & Wylie, 2010).

Highly productive sites will have higher ecosystem site poten-

tial than sites with poorer soils, drier climates, or other condi-

tions that are not conducive to vegetation growth.

Weather and site characteristic-based expected EP (i.e., EEP)

is defined as the expected relatively undisturbed EP for a site

in a particular year based on the weather conditions of that

year and site potential. Favorable weather years will have

© 2013 Blackwell Publishing Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12059

2 Y. GU et al.



higher EEP than years with unfavorable conditions (e.g., too

hot or too cold, too wet or too dry) (Wylie et al., 2008; Gu &

Wylie, 2010; Gu et al., 2012).

Modeling grassland ecosystem performance

In a previous study, we built a data-driven rule-based piece-

wise regression grassland EP model based on the satellite-

derived GSN, site biophysical and geophysical data, and

weather and climate variables (Gu et al., 2012). Fig. 2 is a flow-

chart illustrating how the EP model was developed by Gu et al.

(2012) and how the future EP was estimated in this study. The

main procedures for building grassland EP models included

the following steps:

1 Calculating the EP (i.e., growing season averaged NDVI,

GSN) and the long-term averaged EP for 2000–2008 using

250-m eMODIS NDVI data (Jenkerson, 2010).

2 Extracting grassland pixels within the GPRB using

National Land Cover Database (NLCD) 2001 (Homer et al.,

2004). These pixels were then classified as low, medium,

or high productivity based on the long-term averaged

GSN.

Sand Hills Ecoregion

Non-biofuel area
Biofuel area

Fig. 1 Grassland areas that are potentially suitable (green) or not suitable (tan) for cellulosic biofuel feedstock developments in the

Greater Platte River Basin identified by Gu et al. (2012).

Rule-based piecewise regression EP models
Future climate 

projections  

Growing season averaged NDVI (GSN)

Actual EP 

NDVI data temporal smoothing 

9–year 250–m
eMODIS NDVI 

Satellite 
observations

Biophysical and 
geophysical data 

Ecosystem site potential 

•2001 NLCD
•Compound Topographic Index
•Elevation
•Slope
•Aspect
•SSURGO Data
•MLRA
•Ecoregions
•LANDFIRE site potential
•Long-term average precipitation
•Long-term average temperature
•Long-term average GSN

Rule-based piecewise regression models

PRISM 
weather data 

Precipitation for:
•Winter
•Spring
•Early summer 
•Summer
•Fall

Minimum and maximum 
temperature for:
•Winter
•Spring
•Early summer 
•Summer
•Fall

Future climate based projected EP 

Fig. 2 Flowchart for building EP models and projecting future EP.
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3 Extracting site potential attributes [(i) long-term (2000–2008)

averaged GSN; (ii) long-term (1971–2000) averaged precipita-

tion, maximum temperature, and minimum temperature;

(iii) soil organic carbon; (iv) compound topographic index

and digital elevation model; (v) LANDFIRE environmental

site potential; (vi) north and south aspect and slope; and (vii)

Ecoregions] for ~18 000 grassland pixels in the GPRB. These

pixels are located outside of known fire disturbances and

were randomly stratified and selected from the three produc-

tivity classes (~6000 pixels for each class).

4 Estimating grassland site potential using a conditioned set of

piecewise linear regression models (Henderson et al., 2005;

Wylie et al., 2007) derived from the above site potential attri-

butes.

5 Extracting EP attributes for ~16 000 random grassland pixels,

which are located outside of known fire disturbances and

were stratified and selected across years and the three pro-

ductivity classes. The EP attributes include (i) 2000–2008

GSN; (ii) grassland site potential; and (iii) 2000–2008 seasonal

weather (precipitation and temperature) for the respective

year.

6 Developing a data-driven rule-based piecewise regression

EP model (using Cubist, http://www.rulequest.com/) to

predict EP (i.e., GSN) from grassland site potential (static)

and weather (variable).

More detailed information on data sources and procedures

for building grassland EP models were fully described by Gu

et al. (2012). The derived EP model was used to estimate the

future climate-based projection of grassland EEP by using

future climate projections to replace spatial weather inputs in

the EP model during the mapping process.

Potential biofuel feedstock areas in the GPRB

The DMEP method was applied to identify grasslands that

are potentially suitable for cellulosic biofuel feedstock (e.g.,

switchgrass) development in the GPRB (Gu et al., 2012). We

presumed that areas with consistently moderate to high grass-

land productivity (i.e., productive grassland, aboveground

biomass productivity >2750 kg ha�1 year�1, Gu et al., 2012)

and fair-to-good rangeland condition (i.e., with multiyear per-

sistent ecosystem overperformance or normal performance

relative to site conditions and weather-based productivity

estimates) were potentially suitable for cellulosic feedstock

development. On the other hand, we assumed that the

following grassland conditions were not appropriate for

cellulosic feedstock development: (i) unproductive (i.e., above-

ground grassland biomass productivity � 2750 kg ha�1

year�1, Gu et al., 2012); (ii) degraded; or (iii) highly vulnera-

ble to environment or land use changes. Unproductive condi-

tions include grasslands with poor soils, dry climate

conditions, or other conditions not conducive to productive

grassland growth. Degraded grasslands are characterized by

multiyear persistent ecosystem underperformance with poor

rangeland conditions caused by heavy grazing or insect infes-

tation. Grasslands that are highly vulnerable to environment

changes include the Sand Hills ecoregion in Nebraska (with

sandy soil and sand dune systems), where removal of

biomass may lead to sand dune reactivation and migration.

Fig. 1 shows grassland areas that are potentially suitable

(green) or not suitable (tan) for cellulosic feedstock produc-

tion in the GPRB.

Estimation of future climate-based grassland EEP

In this study, the future (e.g., 2050 and 2099) climate-based pro-

jection of grassland EEPs was estimated using a previous grass-

land EP model (Gu et al., 2012) and the future climate

projections (Fig. 2). Ecosystem site potential and seasonal

weather conditions are important variables and drivers in the

EP models for the EEP calculation. The projected future EEPs

should be valid under the following conditions: (i) no major

changes in management; (ii) no major man- made or natural

disturbances (e.g., fires and insect effects) in the future; and

(iii) no new invasive species in the study area. The future cli-

mate projections (i.e., 2020, 2030, 2040, 2050, and 2099 monthly

temperature and precipitation) were derived from the

National Center for Atmospheric Research (NCAR) Commu-

nity Climate System Model 3.0 (CCSM3) ‘SRES A1B’ and

obtained from the ‘Bias Corrected and Downscaled WCRP

CMIP3 Climate Projections’ data archive. We selected the

future climate projection data estimated from climate scenario

‘A1B’ because it represents a ‘middle’ emissions path that pro-

vides a balance across all energy sources and does not heavily

rely on one particular energy source (http://gdo-dcp.ucllnl.

org/downscaled_cmip3_projections/#About). Climate sce-

nario ‘A1B’ also represents a conservative estimate of future

weather conditions.

To make the projected future EEP (the unit of GSN is a

dimensionless ratio) directly related to grassland biomass pro-

ductivity, we estimated grassland biomass productivity using

the empirical equation below [Eqn (1)] developed by Gu et al.

(2013) for the GPRB region:

Grassland biomass productivityðkg ha�1 yr�1Þ
¼ 9936:5�GSN� 1554 ð1Þ

The resulting future grassland productivity maps will be

used to assess the sustainability of the potential biofuel feed-

stock area in the GPRB.

The percent changes of future EEP compared with current

ecosystem site potential were also calculated using Eqn (2),

which will be used to evaluate the spatial and temporal varia-

tions of the future EEP. In addition, to investigate the cause of

the future EEP changes, future annual precipitation change

(compared with 1971–2000 30-year average annual precipita-

tion) maps for 2050 and 2099 were generated.

EEP percent changeyearð%Þ
¼ ððEEPyear � site potentialÞ=site potentialÞ � 100

ð2Þ

where EEPyear represents the projected EP in a future year, and

site potential represents the current grassland ecosystem site

potential.

© 2013 Blackwell Publishing Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12059
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Spatially averaged EP for the biofuel and the
nonbiofuel areas

To better represent the overall future EEP trends for the entire

biofuel and nonbiofuel areas, we computed spatially averaged

future EEP for these two areas for current site potential (2000–

2008 long-term averaged EP), 2020, 2030, 2040, 2050, and 2099.

Since the Sand Hills ecoregion is highly vulnerable to environ-

ment changes (removal of biomass may lead to sand dune reac-

tivation and migration), most of the Sand Hills ecoregion is

classified as inappropriate for potential biofuel feedstock devel-

opment even though those areas are very productive (Gu et al.,

2012). In order to avoid any biased interpretations on the over-

all future EEP trends for the biofuel and the nonbiofuel areas,

we excluded all pixels located within the Sand Hills ecoregion

during the spatially averaged EEP calculation. The spatially

averaged future EEP time series plots for the biofuel and non-

biofuel areas were generated and used to examine the future

sustainability of these areas. Here, we presume that areas mod-

eled as consistently productive in the future and with increased

EEP (or less than 20% decreased) trends will be sustainable for

future biofuel feedstock development. On the other hand, we

presume that areas that stay unproductive in the future and

with decreased (or less than a 20% increase) EEP trends will be

unsustainable for future biofuel feedstock development.

Results

Comparison of the future grassland EEP with the current
site potential in the GPRB

Figure 3a–f show the spatial distributions and quantities of

current grassland site potential and the 2020, 2030, 2040,

and 2099 future climate projected EEP for the GPRB. As a

result of the diverse biophysical, geophysical, and climate

conditions in the GPRB, site potential, which represents the

long-term grassland productivity, gradually increases from

west to east in the GPRB (Gu et al., 2012). The western part

of the GPRB has very low site potential because of unfavor-

able vegetation growth conditions (e.g., shallow or rocky

soils and dry climate condition), and the eastern part of the

GPRB has high site potential because of favorable vegeta-

tion growth conditions (e.g., good soil and climate condi-

tions) (Gu et al., 2012). Visual comparison of the six maps

indicates that the general spatial patterns in the future EEP

maps are very similar to the spatial patterns in the site

potential map—productivities increase from west to east.

Differences among these six maps can also be found

because of the different climatic conditions expected dur-

ing 2020–2099. For example, our models project that future

grassland productivity has an increasing trend through

time within the red oval region located in the Nebraska

Sand Hills ecoregion (Fig. 1b–f), mainly driven by pro-

jected favorable future weather conditions (e.g., increased

precipitation and suitable temperature during the growing

season—see detailed explanations in the next section). Our

models also project the decreased future productivity

within the cyan circle region located in the southwest

GPRB (Fig. 3b and d) for 2020 and 2040 (compared with

the current site potential) because of the unfavorable future

weather conditions (e.g., drying, too cold, or too hot during

the growing season). In summary, these future grassland

productivity estimation maps (with a 250-m spatial resolu-

tion) can be used as a reference by scientists and land man-

agers to understand how future grassland spatial patterns

and productivities are expected to change (under climate

scenario ‘A1B,’ a conservative estimate of future weather

conditions) in the GPRB.

Future EEP changes in the GPRB grassland system

To illustrate future EEP changes more clearly, we gener-

ated annual precipitation percent change (compared with

30-year average annual precipitation) maps and EEP per-

cent change maps (compared with current site potential)

for 2050 and 2099 (Fig. 4a–d). As discussed in the previ-

ous section, productivity is expected to increase by more

than 5% (Fig. 4c and d) in the red oval region (Fig. 3e and

f) in both 2050 and 2099 because of favorable weather con-

ditions (i.e., >5% increase in annual precipitation, Fig. 4a

and b). Productivity is expected to decline in the south-

western part of the GPRB in 2050 (black oval in Fig. 4c)

and the southeastern part in 2099 (purple oval in Fig. 4d)

because of reduced (>5%) annual precipitation in these

regions (Fig. 4a and b). This indicates that annual precipi-

tation plays an important role in future EEP calculations

(Gu et al., 2012). Additionally, although there are signifi-

cant annual precipitation decreases in the western part of

the GPRB in 2099 (Fig. 4b), the grassland productivity is

expected to increase in this area (Fig. 4d). Based on

monthly precipitation data, we found that the 2099 grow-

ing season (April to September) total precipitation (GSP)

is projected to be much higher than the 2050 GSP (i.e., a

greater portion of precipitation occurred in the growing

season in 2099) in the western part of the GPRB, leading

to a higher EEP in this region for 2099. This indicates that

GSP plays a more important role in the EEP calculation

than annual precipitation does (Smart et al., 2007). In

addition, suitable and favorable minimum and maximum

temperatures during the growing season (e.g., not too

cold and not too hot) are also very important for vegeta-

tion growth and affect grassland productivity. Using sea-

sonal climate variables to build EP models is more

reliable than using annual climate variables alone.

Spatially averaged future EEP plots for the biofuel and the
nonbiofuel areas

Figure 5 demonstrates the spatially averaged future

EEP for the biofuel and the nonbiofuel areas for current

© 2013 Blackwell Publishing Ltd, GCB Bioenergy, doi: 10.1111/gcbb.12059
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site potential, 2020, 2030, 2040, 2050, and 2099 (the Sand

Hills ecoregion was excluded during the averaging). We

presume that areas that are continually productive and

that have increasing future productivity trends will be

sustainable for future biofuel feedstock development,

and areas that remain unproductive in the future will

continue to be unsustainable for future biofuel feedstock

development. Results show that under climate scenario

‘A1B’, the potential biofuel feedstock areas (the wetter

eastern part of the GPRB) will remain productive with a

slight increasing trend in the future (the spatially aver-

aged EPs for these areas are 3519, 3432, 3557, 3605, 3752,

and 3583 kg ha�1 year�1 for current site potential, 2020,

2030, 2040, 2050, and 2099, respectively) (Fig. 5).

Although there is an expected productivity decrease in

the biofuel areas located in the southeastern part of the

Current site potential 2020 EEP 

2099 EEP2050 EEP

2040 EEP 2030 EEP 

(a) 

(c) (d) 

(b) 

(f) (e) 

3,415-5,137
2,918-3,414
2,454-2,917
1,990-2,453
1,560-1,989
700-1,559
0-699
0

Grassland  
productivity 
(kg ha–1 year–1)

Fig. 3 EEP maps for the GPRB grassland systems. (a) current site potential, (b) 2020 EEP, (c) 2030 EEP, (d) 2040 EEP, (e) 2050 EEP,

and (f) 2099 EEP.

2050 EEP change  2099 EEP change 

2050 PPT change  2099 PPT change   

(a) (b) 

(c) (d)

>10% increase 
5-10% increase 
2-5% increase 
Changes within 2% 
2-5% decrease 
5-10% decrease 
>10% decrease 
non-grassland  

Fig. 4 Future annual precipitation (PPT) change (compare with 30-year average PPT) maps and future grassland EEP change maps

(compare with current site potential). (a) 2050 PPT changes, (b) 2099 PPT changes, (c) 2050 EEP changes, and (d) 2099 EEP changes.
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GPRB in 2099 (purple oval in Fig. 4d) because of an

anticipated reduction in annual precipitation, this area

is still projected to be very productive in the future (i.e.,

the EP values are greater than 3400 kg ha�1 year�1 in

this region). Therefore, these identified potential biofuel

feedstock areas should continue to be sustainable for

future biofuel development.

The spatially averaged EPs for the nonbiofuel areas

are 1822, 1691, 1896, 2306, 1994, and 2169 kg ha�1

year�1 for site potential, 2020, 2030, 2040, 2050, and

2099, respectively. Overall, the identified nonbiofuel

grasslands located in the drier western part of the

GPRB (Fig. 1) are expected to stay unproductive (EP

<2600 kg ha�1 year�1, Fig. 3) in the future. A small non-

biofuel region located in the south-central part of the

GPRB (within the small black oval in Fig. 3a and d–f) is

modeled as moderately productive after 2040 because of

the favorable future climate conditions (Fig. 4). There-

fore, this small nonbiofuel region is considered to be

changed to a potential biofuel region in the future (after

2040). In summary, the spatially averaged future EPs

for the nonbiofuel areas are much lower than those for

the biofuel areas (Fig. 5), and we conclude that most of

the nonbiofuel areas will continue to be unsuitable for

biofuel feedstock development in the future.

Discussion

Future climate scenario: a very important driver for
estimating future grassland productivity

The future climate projection data (precipitation and

temperature data) used to project future EEP in this

study were estimated based on the climate scenario

‘A1B.’ Climate scenario ‘A1B’ represents an intermedi-

ate energy emission path, which means technological

change in the energy system is balanced across all fossil

and nonfossil energy sources with no heavy reliance on

one particular energy source (http://gdo-dcp.ucllnl.

org/downscaled_cmip3_projections/#About). The future

productivity maps derived from this study were mainly

driven by a conservative estimate of future weather

conditions (i.e., climate scenario ‘A1B’).

Future weather inputs (temperature and precipita-

tion) may change significantly if they come from a dif-

ferent climate scenario (e.g., climate scenario ‘B1,’ which

represents a low energy emission path with emphasis

on clean, sustainable technology). However, there has

been no significant energy or technology changes

enacted to date that would make scenario ‘B1’ appear

likely. Scenario ‘A1B’ represents a more moderate sce-

nario than scenario ‘A2’ (‘higher’ emissions path) or

‘B1’ and appears reasonably probable; therefore, we

used scenario ‘A1B’ in this study.

Will the identified grassland biofuel areas remain
productive and environmentally sustainable when
converting to switchgrass?

Switchgrass is a perennial grass and is being evaluated

as a potential feedstock for cellulosic biofuels (Mclaugh-

lin & Kszos, 2005; Liebig, 2006; Sanderson et al., 2006;

Schmer et al., 2008; Bracmort, 2010; Bracmort et al.,

2010). Switchgrass is a highly productive species with

an extensive deep root system and requires a relatively

small amount of fertilization and water during its estab-

lishment (Dalrymple & Don, 1967; Sladden et al., 1991;

Bransby et al., 1998; Frank et al., 2004; Liebig, 2006; Rine-

hart, 2006). Many studies show that cultivating switch-

grass can lead to a carbon sink (especially 2 years after

its establishment) and increases ecosystem goods and

services (Bransby et al., 1998; Frank et al., 2004; Gur-

etzky et al., 2011; Liebig, 2006, Liebig et al., 2008; Ma

et al., 2000; Zeri et al., 2011). Therefore, we presume

that, under appropriate management, cultivation of

switchgrass in the identified biofuel regions (i.e., current

productive grasslands under extensive management

with minimal inputs) will remain productive and envi-

ronmentally sustainable in the future. Harvesting

switchgrass for biofuels is often done after senescence

(i.e., plant carbohydrates and nutrients have already

been translocated to the roots and basal shoots of the

vegetation) (Sanderson et al., 1999; Vogel et al., 2002;

Rinehart, 2006; Guretzky et al., 2011) and therefore

would have minimal impacts on plant vigor. One possi-

ble disadvantage for cultivation of switchgrass is that a

monoculture of switchgrass may impact the local

wildlife habitat and species diversity. In summary, we
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conclude that, under proper management practices, con-

verting current productive grasslands in the eastern

part of the GPRB to switchgrass for biofuels will main-

tain or improve ecosystem services (e.g., carbon sink,

increase soil organic carbon, erosion control, slowed

run-off) and minimize the effects of corn-based ethanol

developments on global food supplies.

Summary and future work

This study projects future (e.g., 2050 and 2099) grass-

land productivities and assesses future sustainability of

the potential biofuel feedstock areas in the GPRB.

Results show that under climate scenario ‘A1B’ (a con-

servative estimate of future weather conditions relative

to the ‘B1’ and ‘A2’ scenarios), the potential biofuel

feedstock areas (the wetter eastern part of the GPRB)

will remain productive and will be sustainable for

future biofuel feedstock development. The identified

nonbiofuel grasslands in the drier western part of the

GPRB would be expected to stay unproductive and con-

tinue to be unsuitable for biofuel feedstock development

in the future. This study demonstrates that the DMEP

method can successfully identify areas desirable and

sustainable for future biofuel feedstock development.

The resulting future grassland productivity maps can

help scientists and land managers to better understand

the future ecosystem function and service (under cli-

mate scenario ‘A1B’) of the GPRB grassland systems

and can be used as a reference by land managers and

decision makers to assess the future sustainability and

feasibility of potential biofuel feedstock areas.

This study represents the first step in projecting

future grassland productivity (under a conservative esti-

mate of future weather conditions) and evaluating

future sustainability of potential biofuel feedstock areas

in the GPRB. In future studies, we plan to employ the

new updated climate projections, which are from the

IPCC’s (Intergovernmental Panel on Climate Change)

5th assessment report (AR5) and are based on Represen-

tative Concentration Pathways (RCP) (Moss et al., 2010;

Meinshausen et al., 2011), to develop a future climate

scenario-based (e.g., ‘RCP2.6’ with low radiative forcing,

‘RCP4’ with medium stabilized forcing, and ‘RCP8.5’

with a high baseline emission) grassland productivity

database from 2020 to 2099 for the GPRB. This future

productivity database will help land managers to evalu-

ate and better adapt to probable future ecosystem func-

tions and services in the GPRB.
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