Jurisdictional Approaches to Green Development

Jurisdictional-scale carbon accounting: evaluating options

Aboveground carbon loss in Democratic Republic of the Congo

Study and Presentation by: Alexandra Tyukavina – University of Maryland

Presented by: Fred Stolle - World Resources Institute

IOP PUBLISHING

Environ. Res. Lett. 8 (2013) 044039 (14pp)

ENVIRONMENTAL RESEARCH LETTERS doi:10.1088/1748-9326/8/4/044039

National-scale estimation of gross forest aboveground carbon loss: a case study of the Democratic Republic of the Congo

A Tyukavina¹, S V Stehman², P V Potapov¹, S A Turubanova¹, A Baccini³, S J Goetz³, N T Laporte³, R A Houghton³ and M C Hansen¹

¹ Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA ² Department of Forest and Natural Resources Management, State University of New York, Syracuse, NY 13210, USA

³ Woods Hole Research Center, Falmouth, MA 02540, USA

E-mail: atyukav@umd.edu

Received 16 August 2013 Accepted for publication 30 October 2013 Published 21 November 2013

Alexandra Tyukavina, atyukav@umd.edu

Matthew Hansen, Peter Potapov, Stephen Stehman, Svetlana Turubanova, Alessandro Baccini, Scott Goetz, Nadine Laporte, Richard Houghton

Background

Approaches to mapping and monitoring carbon stocks (Goetz & Dubayah, 2011): ■ "Stratify and Multiply" ■ "Combine and Assign" ■ "Direct Remote Sensing"

Basic IPCC equation to calculate carbon emissions (IPCC, 2006, vol.1, ch.1.2):

Emissions = AD * EF

AD – activity data,

the extent of human activity

EF – emissions factor,

quantifies emissions of removals per unit activity

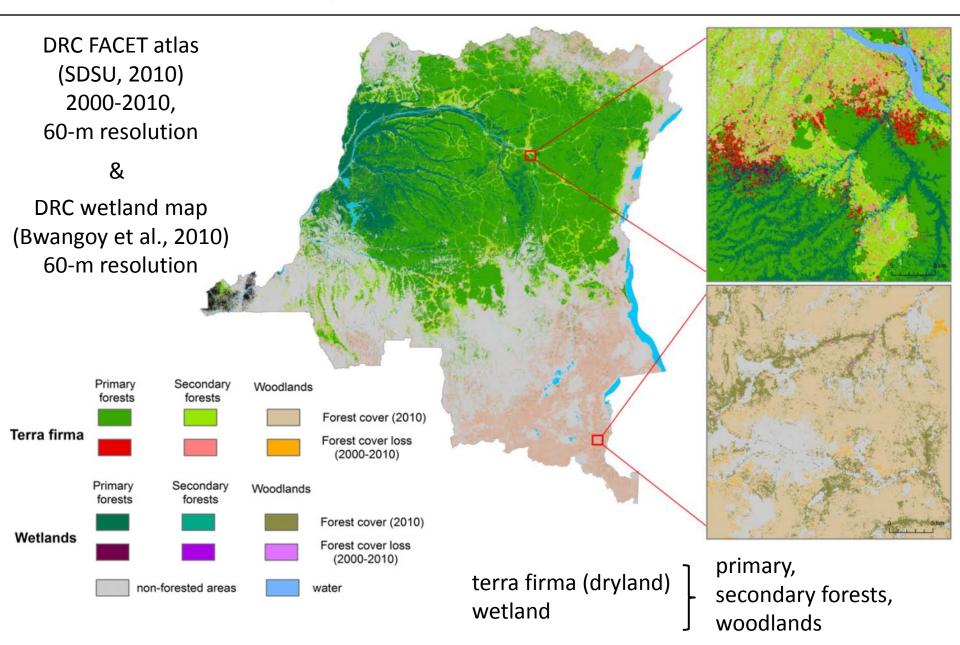
Emissions deforestation:

Area Change * Carbon stock of land cover Area change (Deforestation) = Satellite

Carbon stocks = field and new techniques

Carbon stocks field measurements

Areas of low accessibility -> direct field validation is expensive or not feasible
Need to extrapolate from point to areas



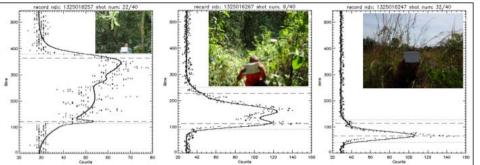
- Develop Activity data
- Develop carbon stock –
- Develop accuracy of Activity
- Develop accuracy assessments of both datastreams

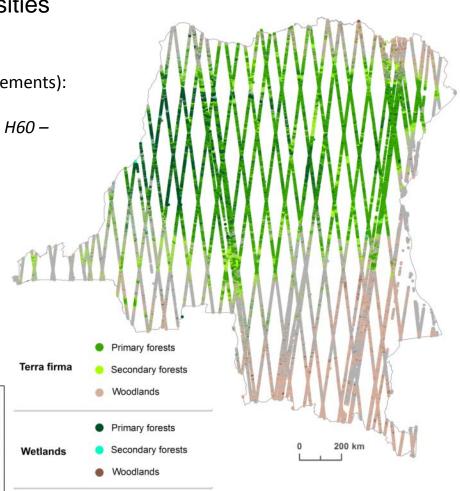
- Develop Activity data
- Develop carbon stock –
- Develop accuracy of Activity
- Develop accuracy assessments of both datastreams

DRC

Activity data: forest cover and loss

- Develop Activity data
- Develop carbon stock
- Develop accuracy of Activity
- Develop accuracy assessments of both datastreams


Data: Carbon data


GLAS-predicted aboveground carbon densities (Baccini et al., 2012):

Regression model (explains 83% of variance in field measurements):

AGB = - 31.631 + 15.952 * HOME * + 7.832 * H10 - 18.805 * H60 - - 38.428 * CANOPY_ENE + 8.285 * H25

- H10, H25,height in the waveform, where the givenH60energy percentile is reached
- HOME the height of median energy
- CANOPY_ENE the integral of the function between signal beginning and the top of ground peak

Non-forested areas

figure from Baccini et al., 2012

Data: Carbon data

Forest type	Mean AGC density	Number of GLAS	STD
	(Mg C ha ⁻¹)	samples	•••
Primary forest	156.8 ± 0.4	115,566	67.03
Secondary forest	94.8 ± 0.7	31,443	67.45
Woodlands	71.2 ± 0.2	121,671	44.24
Wetland primary forest	128.9 ± 0.4	85,923	55.29
Wetland secondary forest	90.7 ± 2.3	3,148	65.83
Wetland woodlands	66.5 ± 0.8	13,707	45.81

- Develop Activity data
- Develop carbon stock

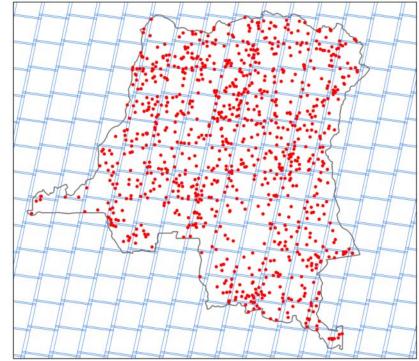
- Develop accuracy of Activity
- Develop accuracy assessments of both datastreams

- Develop Activity data
- Develop carbon stock
- Develop accuracy of Activity
- Develop accuracy assessments of both datastreams

DRC Methods: forest cover loss validation

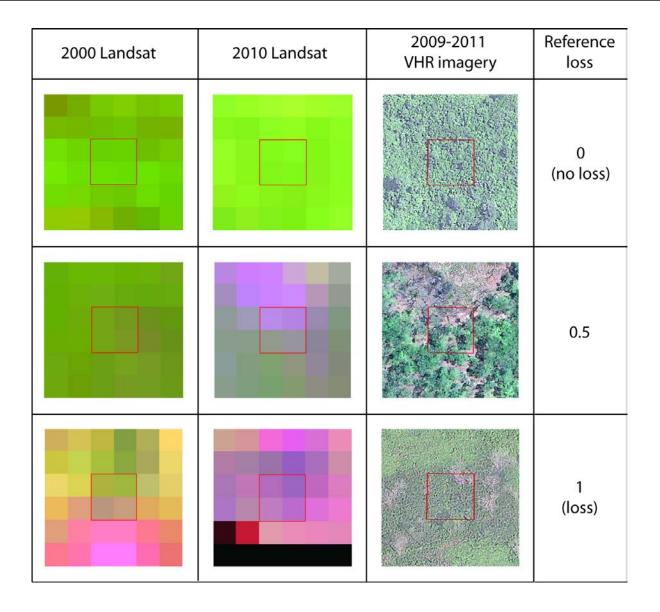
Primary objective – estimate error-adjusted area of forest cover loss within each forest type (Olofsson et al., 2013)

Sampling design:


- Stratified random sampling
- Allocation of samples among strata -> arbitrary, between equal and proportional, to account for both committed and omitted loss area
- National-scale land cover product is conservative, tends to omit loss ->
 -> additional "no loss probable loss" stratum to better estimate omitted loss area

	No loss	Probable loss	Loss	Total
Primary forest	200	70	63	333
Secondary forest	30	87	50	167
Woodlands	100	90	60	250
Swamp primary forest	80	30	57	167
Swamp secondary forest	15	15	12	42
Swamp woodlands	15	15	12	42

Allocation of validation samples (1000 60-m FACET pixels):


Validation data:

- original 30-m Landsat images (2000 and 2010),
- high resolution imagery from Google Earth and CARPE archives (available for 484 samples)

DRC

Methods: forest cover loss validation

Forest type	Error-adjusted area of 2000-2010 forest cover loss (ha)	FACET map area of 2000-2010 forest cover loss (ha)
	<u>30 m data</u>	<u>60 m data</u>
Primary forest	1,129,210 ± 443,156	949,803
Secondary forest	2,994,876 ± 664,625	2,022,852
Woodlands	722,979 ± 396,475	494,668
Swamp primary forest	98,925 ± 11,218	117,473
Swamp secondary forest	87,440 ± 78,014	91,979
Swamp woodlands	29,153 ± 7,704	34,983

- Develop Activity data
- Develop carbon stock
- Develop accuracy of Activity
- Develop accuracy assessments of both datastreams

DRC Methods: combining uncertainties

IPCC Guidelines for National Greenhouse Gas Inventories (IPCC, 2006, vol.1, ch.3):

• multiplication approach <

AGC loss =
$$\triangle AD * CD$$

$$U_{total} = \sqrt{U_1^2 + U_2^2 + \dots + U_n^2}$$

 U_{total} - the percentage uncertainty in the product of the quantities (half the 95% confidence interval divided by the total and expressed as percentage); U_i - the percentage uncertainties associated with each of the quantities.

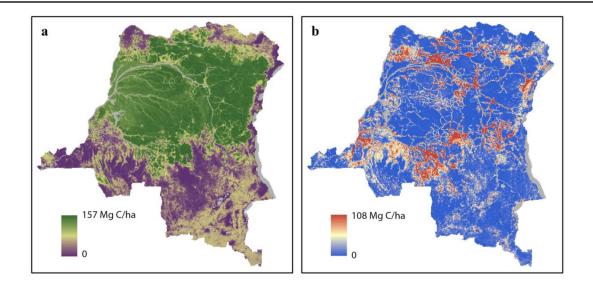
Forest type	UAD (%)	UCD(%)	Utotal (%)
Primary forest	20.02	0.13	20.02
Secondary forest	11.32	0.40	11.33
Woodlands	27.98	0.18	27.98

Forest type	UAD (%)	UCD(%)	Utotal (%)
Swamp primary forest	5.79	0.15	5.79
Swamp secondary forest	45.52	1.29	45.54
Swamp woodlands	13.48	0.59	13.50

• addition and subtraction approach

Total DRC AGC loss =
$$\Sigma$$

$$U_{total} = \frac{\sqrt{(U_1 * x_1)^2 + (U_2 * x_2)^2 + \dots + (U_n * x_n)^2}}{|x_1 + x_2 + \dots + x_n|}$$


x_i and **U**_i - the uncertain quantities and percentage uncertainties associated with them.

Total DRC AGC loss: $U_{total} = 9.4\%$

Results

Source		2000-2005	2005-2010
	Extent	Annual gross forest cover loss	
		(% of the fo	orest area)
current study	forests + woodlands	$0.32\% \pm 0.03\%$	
	forests	$0.35\% \pm 0.03\%$	
FACET map	forests + woodlands	0.22%	0.25%
Potapov et al. (2012) – 60 m		0.2270	0.23%
Hansen et al. (2013) – 30 m	forests + woodlands	0.34%	
Ernst et al. (2013)	forests	$0.32\% \pm 0.05\%$	_
Hansen et al. (2010)	forests + woodlands	0.12% ± 0.23%	—
		Annual gross AGC loss	
		(Tg C year ¹)	
current study	forests + woodlands	53.3 ± 9.8	
	•	Annual gross carbon loss (Tg C year ⁻¹)	
Harris et al. (2012)	forests + woodlands	23	_

Results and Discussion

Forest type and strata averages, aggregated to a 5-km grid:a) year 2000 AGC;b) estimate of 2000-2010 gross AGC loss.

- Error-adjustment from validation can significantly increase loss estimates for landscapes dominated by small-scale land dynamics, as exist in Central Africa
- Biomass data can be aggregated by forest type,
- Sample-based estimations using high spatial resolution data may be required if Landsat data are found insufficient

This presentation - Message

- Recent advances in remote sensing enable the mapping and monitoring of carbon stocks without relying on extensive field measurements Better data , more accurate results
 - Good GHG emissions information relies on good input data.It is clear that
 - spatial scale of forest change;
 - good forest type characterization;
 - sample representativeness.
- Terra firma secondary forest cover loss accounted for 40% more carbon loss significant more then primary forest loss Secondary forest is important in GHG accounting

THANKS - TERIMA KASIH

Aboveground carbon loss in Democratic Republic of the Congo

Study and Presentation by: Alexandra Tyukavina – University of Maryland

atyukav@umd.edu

Thank you for attention!