

Second Expert Workshop, Jan. 31st, 2012

Presentation Outline

- □ Project Introduction
- Methodology & Model Structure
- Revisions after First Workshop
- Metrics
- Relative Ranking Results
- Categorization Ranking Preliminary Results

Project Introduction

- Objectives
- 2. Process
- 3. Study Area

Project Objectives

- Design and test a watershed assessment process, which includes analysis of cumulative watershed effects.
- Establish priorities for protection and restoration of aquatic resources and evaluate/rank areas within watersheds accordingly.
- Provide relevant information, strategies/actions, and a decision support tool to assist partners, stakeholders and regulatory staff with decisions affecting aquatic resources.

Project Study Area

Five WV HUC8 Watersheds:

- Monongahela
- Gauley
- Little Kanawha
- UpperGuyandotte

<u>Project Process – First 2 Watersheds</u>

- □ 4/1/2011 Project Start
- Define watershed assessment methodology
- □ 6/13/2011 Technical advisory team meeting
- Complete watershed characterization
- 10/25 & 10/26/2011 Expert workshop one
- Complete draft consolidated analysis
- □ 1/31/2012 Expert workshop two
- Complete draft watershed assessments
- By 4/1/2012 Decision maker/end user workshop
- Complete final watershed assessments
- 6/1/2012 Final reports & draft (not live) interactive web application completed

Project Process – Final 3 Watersheds

- Complete watershed characterization
- □ By 10/1/2012 Expert workshop one
- Complete consolidated analysis
- □ By 12/1/2012 Expert workshop two
- Complete draft watershed assessments
- By 2/1/2013 Decision maker/end user workshop
- Complete final watershed assessments
- □ 4/1/2013 Final reports & interactive web application completed

Methodology

- Watershed Characterization
- 2. Priority Models

Watershed Characterization

- □ Planning Units:
 - HUC-12 watersheds
 - Modified NHDPlus catchments
- □ Landscape types:
 - Stream/Riparian
 - Wetlands
 - Uplands

Priority Models

- □ Stream/Riparian
- Wetlands
- Uplands

Metrics are individually defined for each Priority Model

Methodology

- Develop a **relative** ranking of planning units within a watershed
- Develop **non-relative** index of watershed condition and threat based on pre-defined quality scale (e.g., 1-4 scale where 1= poor, 2=fair, 3= good, 4= excellent)

- First phase: comparison of planning units
- Second phase/ consolidated analysis: detailed analysis of target areas and potential actions within each planning unit

Consolidated Analysis

- CumulativeWatershed Effects
- Land use changes
- Landscape losses
- Ecosystem function/ service degradation
- Cumulative impacts/ stresses

- Historical and Future Conditions
- Trends analysis (water use, permitting, population growth, climate change, etc.)
- Future scenarios analysis (within targeted areas and for proposed strategies/actions)

Overview of Model Structure

Hierarchical Structure:

- 3 Models: Streams, Wetlands, Uplands
- 1 Category in Phase I: Condition/Function (includes former "Threats" Category)
- Several Indices under Condition/Function
- Multiple Metrics to define each index

Changes to Model Structure

- Combined Condition/Function & Threats under new Condition/Function Category
 - Includes both Quality Indicators and Stressors within each Index
- Changed Wetlands Model Indices and Metrics considerably
 - Reflects wetland functions
 - Many metrics calculated on a wetland contributing catchment basis, not just wetland buffer

Quality Indicators vs. Stressors

- To help inform potential strategies divided metrics into quality indicators and stressors
- Rolled each group up separately within each index, in addition to overall rating for each index
- Will help guide restoration/protection decisions

Redundant Metrics

- Perform Correlation Analysis to find highly correlated metrics
- Performed on HUC12 analysis
- Eliminated several metrics
- Regression Analysis/PCA Analysis: to find metrics with greatest impact on water quality – preliminary results not conclusive

Weighting

- Hoping to use Regression Analysis to inform weighting of metrics in model
- So far no "good fit" model found
- Preliminary weighting based on literature review and "best guess"

Metrics in Multiple Indices

- Some metrics appropriate in multiple indices:
 - Percent impervious cover
 - Surface mining
 - Oil and Gas wells
 - Road/railroad density
 - Landcover
- Indices are rated independently of each other
- Potential for double-counting of these metrics in overall model

FEEDBACK/QUESTIONS?

Indices: Streams

CONDITION/ FUNCTION

- Water quality
- Water quantity
- Hydrologic Connectivity
- Biodiversity
- Riparian Habitat
- □ Protected Lands

Model: Streams/Riparian Areas

Water Quality

Metric: Percent imperviousness

□ Impervious cover (1-100 percent)

Metric: Mining

- □ SURFACE: A combination of abandoned mine lands, GES mining footprint, DEP valley fills and refuse structures, Appalachian Voices surface mining digitization, TNC-generated surface mining from topos and aerial imagery
- UNDERGROUND: GES underground mining footprint

Other Water Quality Metrics

- □ Impaired Streams (303(d), TMDL, AMD)
- DEP's Water Quality sampling stations
 - GLIMPSS (CF)
 - pH, Sulfate, RBP scores, metals, etc.
- □ Oil and Gas wells
- Gas well production
- □ NPDES: Septic Systems
- Highly erodible soils

Model: Streams/Riparian Areas

Water Quantity

No good direct measurements, had to find representative surrogates

Metric: Dam drainage area

 Catchment area for dams (delineated using contributing NHDPlus catchments for dams visible on 2010 aerial imagery)

Metric: Percent imperviousness

□ Impervious cover (1-100 percent)

Other Water Quantity metrics

- Surface mining
- Large Quantity users
- Public Water Supply data
- Wastewater treatment plants
- □ Consumptive/nonconsumptive use

Model: Streams/Riparian Areas

Hydrologic Connectivity

Metric: Unimpeded streams

- Developed based on TNC-ERO Functional River Network, which identifies stream lengths without impoundments or waterfalls (impediments to hydrologic connectivity)
- ☐ Thresholds (by ERO Stream Size Class)

Very good: 5/6 (100-<250 mi)

Good: 3/4 (25-<100 mi)

Fair: 2 (10-<25 mi)

Poor: 1 (<10 mi)

Other Hydrologic Connectivity Metrics

- Length of headwater streams/total stream length
- □ % riparian area with forested cover
- Number of dams
- Culverts (estimated by using road crossings over small streams)
- Bridges
- Temperature-impaired streams

Model: Streams/Riparian Areas

Biodiversity

Biodiversity Metrics

- Rare and threatened species (includes DNR's SGNC species), including mussels, fish, crayfish, odonates
- □ Rare species index (calculated from # geology classes, elevation range, calcareous bedrock)
- □ Trout streams
- Non-native invasive species

Model: Streams/Riparian Areas

Riparian Habitat

Riparian Habitat Metrics

- Riparian land use (also in other indices)
- □ Active surface mining (also in other indices)
- □ Oil and gas wells (also in other indices)
- Road/railroad density (also in other indices)
- Pipelines, transmission lines, buildings

Model: Streams/Riparian Areas

Protected Lands:

GAP 1 – 3 lands

Indices: Wetlands

CONDITION/ FUNCTION

- Water quality: Pollutant filtration/sediment retention
- Hydrology: Flood storage/connectivity
- Biodiversity
- □ Wetland Habitat
- □ Protected Lands

Wetland Function Metrics

 Headwater wetlands, forested headwater wetlands, forested floodplain wetlands, etc

Wetland Buffer vs. Catchment

□ Wetland buffer (50 m)

Wetland catchments

(delineated using

contributing

NHDPlus

catchments)

Model: Wetlands

Water Quality:
Pollutant Filtration/Sediment
Retention

Water Quality Metrics

- □ Forested headwater wetlands
- Landcover in wetland catchments (% ag, grazing, urban, forested, natural)
- □ % imperviousness in catchment
- Roads/railroads in catchment
- Mining and oil & gas wells in catchment
- Septic systems, landfills, timbering in catchment

Model: Wetlands

Hydrology: Flood Storage/Connectivity

Wetland Hydrology Metrics

- Wetland area and size
- Ratio of wetland catchment area to wetland area
- □ Distance to nearest surface water
- Hydric soils
- Forested flood plain wetlands
- □ Floodplain area

Model: Wetlands

Biodiversity

Biodiversity Metrics

- Rare and threatened species (includes DNR's SGNC species) in wetland buffer
- Calcareous bedrock in wetland buffer
- □ Non-native invasive species in wetland buffer

Model: Wetlands

Wetland Habitat

Wetland Habitat Metrics

- □ Land use in wetland buffer
- Active surface mining in wetland buffer
- □ Oil and gas wells in wetland buffer
- Road/railroad density in wetland buffer
- Pipelines, transmission lines, buildings in wetland buffer

Model: Wetlands

Protected Lands:

GAP 1 - 3 lands

Indices: Uplands

CONDITION/ FUNCTION

- Habitat Connectivity
- Upland Habitat
- Biodiversity
- □ Protected Lands

Model: Uplands

Habitat Connectivity

Metric: Forest Block Sizes

 TNC-ERO generated maps of forest blocks greater than 100 acres

Calculated largest and mean intersecting block

size

Metric: Local Integrity

- A measure of connectivity of natural cover in the landscape
- Metric developed for Conservation Assessment& Prioritization System at UMass Amherst

Other Habitat Connectivity metrics

- □ Active surface mining, coal production
- □ Oil & gas wells
- Road/railroad density
- □ Transmission lines, pipelines
- □ Wind turbines, FCC towers
- □ Buildings, landfills
- Timber harvests

Model: Uplands

Habitat Quality

Metric: Landscape Heterogeneity

- □ Landform variety + Elevation range within 100 acres of each cell, normalized and summed
- ☐ Higher heterogeneity = higher habitat diversity

Other Habitat Quality Metrics

- Active surface mining (also in Habitat Connectivity)
- Legacy surface mines
- Vegetation unaltered from reference condition
- Percent karst
- □ Land use (% ag, grazed, developed, natural)
- Timber harvest (also in Habitat Connectivity)

Model: Uplands

Biodiversity

Metric: Pests & Pathogens

- Projected % basal area loss to pests over 15 years
- □ Specific pests modeled:
 - Gypsy Moth
 - Hardwood decline

Biodiversity Metrics

- Rare and threatened species (includes DNR's SGNC species)
- □ Rare species index (calculated from # geology classes, elevation range, calcareous bedrock)
- Non-native invasive species
- Number of ecoregional subdivisions
- Calcareous bedrock

Model: Uplands

Protected Lands:

GAP 1 - 3 lands

FEEDBACK/QUESTIONS?

Monongahela Watershed

Results: Relative Rankings

Standard Legend

Relative Ratings

Elk Watershed

Results: Relative Rankings

GROUP DISCUSSION 1

Please split up into assigned Groups to discuss the revised structure and metrics.

Questions to consider:

- Do the new Indices describe the Condition/Function adequately?
- Do the metrics describe the condition of the indices?
- Are we missing important metrics?
- Which metrics are most important in describing each index?
- How should they be weighted?
- Is it ok to have the same metric in more than one index?
- Does the rollup procedure capture the overall condition/function appropriately?

Project Objectives

- Design and test a watershed assessment process, which includes analysis of cumulative watershed effects.
- Establish priorities for protection and restoration of aquatic resources and evaluate/rank areas within watersheds accordingly.
- Provide relevant information, strategies/actions, and a decision support tool to assist partners, stakeholders and regulatory staff with decisions affecting aquatic resources.

Relative vs. Objective Classification

- □ Relative ranking of HUC12s is completed
- Compares planning units, but gives no information on which are good quality and which need to be restored
- Need to define Thresholds for each metric to be able to assign to a category
- Literature review has only yielded a handful of objective thresholds
- Used Equal Intervals to define thresholds for preliminary results

Establish Priorities

- Need to define priorities for Protection and Restoration
- ☐ Highest Quality Areas highest priorities for Protection Activities?
- Lower Quality Areas priority for Restoration Activities?
- Having appropriate thresholds defined for each metric would help inform priorities

Threshold Categories

- □ Very Good: Ecologically desirable status; requires little intervention for maintenance
- Good: Indicator within acceptable range of variation; some intervention required for maintenance

Restoration Threshold

- Fair: Outside acceptable range of variation;
 requires human intervention
- Poor: Restoration increasingly difficult; may result in extirpation of target

Monongahela Watershed

Results:

Objective Classification

GROUP DISCUSSION 2

Please split up into assigned Groups to discuss the objective ratings and thresholds.

Questions to consider:

- What is the best method to define thresholds?
 - Literature review
 - > Equal intervals
 - Quartiles
 - "Best Guess" from data
- With few data-derived thresholds, should we attempt an objective ranking?
- Should highest quality areas be automatic priorities for Protection?
- Should good-fair rated areas be automatic priorities for Restoration?