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1. PROJECT OVERVIEW 

We used a predictive model to map canopy cover of vegetation over seven feet in height (“tall woody 
vegetation”) at 30-meter resolution over nearly 29 million acres within and adjacent to the range of the 
greater sage-grouse in Oregon (Figure 1). Texture measures computed at various resolutions from color-
infrared aerial photography provided the main source of predictor data used to produce the map. Canopy 
cover was treated as a categorical variable using six cover classes: absent (cover class C0), present at less 
than 4% (C1), 4 – 10% (C2), 10 – 20% (C3), 20 – 50% (C4), and 50% and over (C5). The map is 
referenced to conditions in the years 2011 and 2012. 

Although the specific target of the mapping was western juniper (Juniperus occidentalis), our 
reference data did not permit separating juniper from other tall woody vegetation during the predictive 
modeling process. The majority of the tall woody vegetation within the project area is western juniper. 
However, in high elevation regions, riparian, wetland, and residential areas, other vegetation is 
occasionally represented. 

The methodology discussed here produces raw modeled data. It is recommended that prior to use in 
most applications this raw tree cover product be additionally filtered or masked to eliminate false 
detections which often occur adjacent to agricultural areas and roads. For species-specific applications, an 
additional modeling phase is necessary to either eliminate tree cover detections likely to be species other 
than the target, or to model species importance values associated with each tree occurrence. 

2. METHODS 

2.1. Predictor data 
Uncompressed color-infrared aerial photography at 1-meter resolution provided by the National 

Agricultural Imagery Program (NAIP) and Landsat TM satellite imagery at 30-meter resolution were the 
main sources of predictor data. Although topographic metrics were generated at 10-meter resolution from 
the National Elevation Dataset (NED), these were not used for prediction because the reference data did 
not allow training across the full range of topographic conditions within the mapping area, which would 
result in spatial bias. In addition, excluding variables related to environmental setting allows the map to 
fully reflect existing rather than potential vegetation and forms a more suitable baseline for monitoring. 

The red and near-infrared bands were extracted from the NAIP imagery, and the Normalized 
Difference Vegetation Index (NDVI, see Tucker 1979) was computed. The red band and NDVI were then 
used as complementary sources for creating a variety of texture metrics. Each was spatially degraded to 
several coarser resolutions (2-meter, 3-meter, 4-meter, 6-meter, 9-meter, and 12-meter) through 
aggregating by the median value of the corresponding 1-meter data. Two base texture metrics were then 
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created at each resolution: the 3x3-cell focal standard deviation and the absolute difference of each cell 
from the median of the values of its eight nearest neighbors. 

 

 
Figure 1.  Mapped area in eastern Oregon is within solid black line. 

Two combinations of the above metrics were created to attempt to compensate for contrast variability 
in the photography introduced by variations in sun-surface-sensor geometry, view angle, atmospheric 
conditions, and phenology. First, the Normalized Difference Texture Index (NDTI, introduced here) was 
created by pairwise combination of corresponding metrics at resolutions differing by a factor of three. The 
focal standard deviations at 1-meter and 3-meter resolution, 2- and 6-meter, 3- and 9-meter, and 4- and 
12-meter resolution were combined analogously to the NDVI formula. Second, the focal standard 
deviations derived from the red band and the NDVI were combined at each resolution, in the same 
manner. Both of these combinations result in some cancellation of noise due to contrast variability. 

All NAIP-based predictors were then degraded to 30-meter resolution, aggregating both by the 
median and the mean of the constituent finer resolution values. In addition, the maximum values of the 
near-infrared response and NDVI occurring in any 1-meter cell were extracted to the 30-meter grids. 
Finally, tiles from the western half of the project area were reprojected to UTM zone 11 (datum NAD83) 
via nearest-neighbor resampling, to match the projection of the tiles in the eastern half, and all tiles were 
mosaicked into a single image for each predictor. 

To provide spectral information not available in the aerial photography, we downloaded cloud-free 
Landsat TM satellite data from the USGS EROS Data Center. The images, collected in late summer 2011, 
were reprojected via nearest-neighbor resampling to the common projection of UTM zone 11 (datum 
NAD83) and converted to exo-atmospheric reflectance using header file information. Adjacent paths were 
then radiometrically normalized via variance-preserving reduced major axis regression (see Cohen et al. 
2003) before merging them across the project area. The three bands of the Tasseled Cap Transformation 
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(Crist and Cicone 1984) were calculated from the merged data using coefficients derived for exo-
atmospheric reflectance (Huang et al. 2002). The resulting mosaicked images were inspected and bands 1 
and 2 (representing reflectance in the blue and green wavelengths) were eliminated because of poor 
normalization across the project area. The TM data were kept at their native 30-meter resolution. 

A total of 90 predictor data layers were produced, all but seven of them derived from the NAIP data. 
To reduce data storage and processing requirements, all predictors were converted to unsigned 8-bit 
values by stretching each across three standard deviations from its mean value. 

2.2. Training reference data 
LiDAR data were obtained at 1-meter resolution from a repository at Oregon State University for 

eight imaged areas within the project area (Figure 2). Vegetation height was calculated by subtracting the 
bare earth elevation from the highest hit elevation and the fraction of each 30-meter pixel with height over 
seven feet was determined. 40,000 randomly located points were generated within the LiDAR areas. 

The reference datasets were concentrated in the northern portion of the project area from areas not 
representative of the range of conditions to the south. In particular, a variety of geological types, burned 
areas, steep canyons, extensive sagebrush stands, and wetlands modeled poorly in early runs due to their 
lack of representation in the reference data. To alleviate this problem, 39 areas representative of these 
types were hand-digitized based on aerial photography (Figure 2). All appeared in photography to contain 
no tall woody vegetation. Additional random points were generated within these areas, equal in sum to the 
total number of absence points from the LiDAR-derived data. An equal number of points was chosen 
from each digitized polygon, totaling an additional approximately 6700 samples of absence data. 

 
Figure 2.  Color-infrared 2012 NAIP mosaic of the project area, with LiDAR reference data 
areas outlined in yellow, and digitized absence polygons in pink. 
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Several other data layers were needed for the model-building process. The mean of the 1-meter pixel 
height values over seven feet was determined for each 30-meter pixel, giving an indication of the 
dominant canopy height of the woody vegetation present at any training location. This information was 
used to reduce training on taller conifer forest types and focus model-building on stands of shorter trees 
such as juniper. Topographic slope derived from the NED was used to restrict analysis to areas of less 
extreme slopes; at higher slopes, artifacts in the LiDAR data become significant, making vegetation 
height data less reliable, especially for small trees and shorter vegetation. The most recent National Land 
Cover Dataset (NLCD) was also used to focus training on areas potentially containing western juniper. 

At each sample point, the LiDAR-derived canopy cover and the value of each of the predictor grids 
were extracted. In addition, the mean tall woody vegetation height, the NED slope in degrees, and the 
NCLD land cover code were extracted for each point. Points with mean vegetation height over 50 feet, 
slope over 40 degrees, or NLCD codes corresponding to agriculture, wetlands, or developed areas were 
eliminated from the training data pool prior to modeling. 

2.3. Modeling 
A machine learning algorithm, Random Forests, was used for predictive modeling, running in the R 

statistical computing environment. The modeling process was broken into three stages in order to better 
represent distinctions among low canopy cover stands. In the first model stage, a binary split was made 
between samples with 4% or greater cover of tall woody vegetation (cover classes C2 – C5), and those 
with less than that amount (cover classes C0 and C1). This split was done first because 4% has been 
found to be a critical threshold for sage grouse reproduction. Samples with less than 4% cover were 
subjected to a second binary modeling stage which split samples where taller vegetation was totally 
absent (cover class C0) from samples with low cover (C1). A third modeling stage was performed on 
stands with 4% or greater cover, to divide them into four cover classes: 4 – 10% (C2), 10 – 20% (C3), 20 
– 50% (C4), and 50% and over (C5). Random Forests regression was explored as an alternative to 
classification for prediction of a continuous cover amount, but model accuracies after binning to the 
above cover classes were significantly inferior. 

In the first model stage, the training data in the four cover classes over 4% canopy cover were 
balanced between classes before modeling, by randomly downsampling until the classes were 
approximately equal. This was done in order to prevent the 4% and over class from being dominated by 
very high canopy cover stands which are often characterized by tree species other than juniper and for 
which detection in any event doesn’t present a major challenge. In all model runs, each Random Forests 
tree was generated using equal sample sizes among the classes being modeled, in order to achieve a 
reasonable balance between omission and commission errors. The optimal set of predictor layers was 
determined for each model via a variable selection process that gradually reduced the number of predictor 
layers used to only those with the highest determined model importance values (see Evans and Cushman 
2009). Overall error rates and maximum class error rates were compared for each reduced set of predictor 
layers. For the binary split model stages, the model with the lowest maximum class error rate was 
selected. For the 4-class model stage, the model with the lowest overall error rate was selected. The model 
generated during each stage consisted of 1000 trees. 

An optimal probability threshold was determined for each of the binary split models, in order to 
equalize the relative frequency of false negative and false positive predictions in the training data. Using 
the optimal predictor layer set for each model stage, 5% of the training data was withheld and a model 
was generated from the remaining data. This model was then used to predict the class outcome 
probabilities for the withheld data. A confusion matrix was generated for each possible probability 
threshold value ranging from 0.01 to 0.99 in intervals of 0.01. This procedure was repeated twenty times 
and the cumulative confusion matrix was tallied for each threshold value. The interpolated threshold 
value resulting in an equal rate of false negative and false positive predictions was selected as the optimal 
threshold and was used during the subsequent prediction process, in addition to a simple probability 
threshold of 0.5. 
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2.4. Prediction 
The models were applied across the project area, resulting in 30-meter resolution maps for each of the 

three model stages. Class probabilities were written out for the binary split stages, while only the most 
likely class was written out for the 4-class model. For a given pixel, the first model stage prediction 
determined whether the cover class prediction would be drawn from the second or third model stage. The 
cover class output contained six cover classes corresponding to the canopy cover of tall woody 
vegetation. Two versions of the map were made, one based on using a simple probability threshold of 0.5 
for each of the binary split models, and one using the optimal probability thresholds determined above. 
Simple presence/absence maps were created from the cover class maps by combining all cover classes 
other than the absence class (cover classes C1 – C5) into a single class representing presence. 

2.5. Focal and topographic filtering 
Focal filtered versions of the maps were created in order to reduce the degree of pixelation and 

remove some false detections due to linear features. Two successive 3x3-cell majority filters were applied 
to the presence/absence map for pixels modeled with tree presence. Pixels modeled as absence were not 
filtered because false positives appeared to be much more prevalent than false negatives. For pixels 
predicted as presence in the filtered map, a filtered cover class was determined by recoding each of the 
nine nearest neighbors to the midpoint of their predicted cover class, averaging them, and then 
reclassifying the averaged value using the original cover classes. Therefore, a total of four alternate map 
outputs were created, a smoothed and an unsmoothed version of each of the probability threshold 
alternatives. Finally, outputs in areas exceeding 40 degrees slope were masked since predictive models 
could not be parameterized under these conditions due to artifacts in the LiDAR reference data. 

2.6. Map accuracy assessment 
A map accuracy assessment was performed on the unfiltered, non-equalized error rate map, using 

independent reference data obtained for several parts of the project area. The accuracy assessment is 
documented separately in Nielsen et al. (2014). 

3. RESULTS 

3.1. Tree Cover 
The smoothed map outputs for presence/absence and cover class derived from the non-equalized error 

rate model are shown in Figures 3 and 4. 
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Figure 3. Presence (green) and absence (white) of tall woody vegetation. 
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Figure 4.  Modeled cover class of tall woody vegetation. Classes shown are absent (C0: white), present at 
less than 4% (C1: blue), 4 – 10% (C2: green), 10 – 20% (C3: orange), 20 – 50% (C4: red), and 50% and over 
(C5: magenta). 

3.2. Estimated model accuracy of products 
The model-based accuracies of each of the three modeling stages were determined separately. The 

two binary split models were assessed by both Random Forests out-of-bag error estimates and 
bootstrapped estimates (20 repetitions with 5% of the training data withheld each time) during the 
threshold optimization procedure. Only out-of-bag error estimates were used to assess model accuracy of 
the four-class model. The results are shown in Tables 1 – 3. Without threshold optimization to equalize 
false positive and false negative error rates, false negatives were significantly more common in both 
binary model stages. However, since these error rates were assessed against the training data, which is not 
representative of the project area as a whole, this does not necessarily imply that the same pattern would 
hold true against independent test data. The preferred version of the map was instead determined through 
inspection of the alternate versions. 
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Table 1. Out-of-bag and bootstrapped class error estimates for first binary split model (stage 1). 

 

Table 2. Out-of-bag and bootstrapped class error estimates for second binary split model (stage 2). 

 

 
Table 3. Out-of-bag class error estimates for four-class cover model (stage 3). Fuzzy error estimates give the 
rate of errors of more than one class from the correct answer. 

3.3. Relative importance of predictors 
Predictor importance in each model was assessed using the mean decrease in accuracy statistic 

reported by Random Forests. This measures the decrease in model accuracy observed during Random 
Forests trees which exclude a certain predictor. 

The most important predictors for the first model stage which separated cover less than 4% from 
cover greater than that were textures at various resolutions computed using the NDVI based on NAIP 
imagery, and the maximum value of the 1-meter NDVI within each 30-meter cell. Textures based on the 
red band were only slightly less significant than those based on the NDVI. Textures at 3- and 4-meter 
resolution were the most important for both the NDVI and the red band. In general, the mean aggregation 
method was more effective than the median. The combination metrics were useful, particularly the NDTI 
at the finest resolution. Landsat TM predictors were somewhat less helpful; the most important was the 
Tasseled Cap brightness. 

The maximum value of the 1-meter NDVI was by far the most important predictor in the second 
model stage. The red/NDVI texture difference combination metrics at 3-meter and 1-meter resolutions 
were the next most important predictors. In general, NDVI-based textures were very important in this 
model, but at finer resolutions than during the first stage model. Again, red-based textures were slightly 
less significant. Landsat TM predictors were more important in this model, especially the Tasseled Cap 
greenness and near-infrared reflectance.  

The third model stage, the 4-class cover model, was dominated by very different predictors. The most 
important texture predictor was the 1-meter red band texture, and the Landsat TM Tasseled Cap 
brightness and red band reflectance were among the most important predictors. NDVI-based texture 
predictors at intermediate resolutions remained important, and the TM mid-infrared bands were also 
effective. All the combination texture metrics performed fairly poorly here. 

3.4. Map accuracy assessment 
Results of the independent map accuracy assessment are documented in Nielsen et al. (2014). 
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4. POTENTIAL FOR MAP IMPROVEMENT 

The best way to improve the current map would be incorporating reference data from a more 
representative portion of the project area. In addition to refining the model’s ability to distinguish between 
juniper and other land cover types with similar appearance, sufficient training data collected across the 
project area would allow model optimization based on realistic estimates of map class proportions within 
the project area. They would also allow use of topographic metrics as predictors, if desired, because 
positive and negative occurrences could be sampled across the range of predictor values. 

Some of this reference data would require field collection, because while junipers can often be 
identified with near certainty through photointerpretation, it can be difficult to establish whether trees 
visible in aerial photography meet the height criteria defining the map target. If a goal is to map early 
stages of juniper invasion, with trees less than seven feet tall, field-derived data is absolutely essential 
since it is often impossible to distinguish smaller juniper trees from other woody vegetation. It would be 
helpful if sampling locations were selected with reference to the current map, in order to provide training 
data in borderline situations. 

Achievement of significantly higher accuracy levels at the lowest cover classes could likely be 
realized by implementing an individual tree detection approach developed at INR. The method is a variant 
of spatial wavelet analysis (Falkowski et al. 2006) but with exponentially decreased processing time 
because key calculations are performed at reduced resolutions. 

Modest improvements in map accuracy in the lowest cover classes might be realized by switching to 
a finer mapping resolution of 10 meters. Since individual trees would occupy a larger portion of these 
smaller pixels, accuracies at low cover amounts might be improved. However, increased edge effects due 
to image misregistration errors between the training and predictor datasets, and shading and radial 
distortion artifacts from adjacent pixels might cause a practical reduction in accuracy. At any rate, the 
prediction process would be much slower at 10-meter resolution, and could be more complicated to 
implement, as memory limitations might be reached without subdividing the mapping area.  

Incremental improvements also might be accomplished by incorporating additional texture metrics, 
such as those based on the Gray Level Co-occurrence Matrix (Haralick et al. 1973) or other metrics with 
strong response to anisotropy. Incorporating satellite data derived from superior Landsat OLI imagery 
also might allow slight improvements. However, the benefits of these changes would likely not be 
realized in more than marginal amounts without first obtaining more representative training data. 
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