A Lake and Pond Classification System for the Northeast and Mid-Atlantic States

November 2014

Mark Anderson, Arlene Olivero Sheldon, Alex Jospe The Nature Conservancy Eastern Regional_Office

North Atlantic Landscape Conservation Cooperative

Protecting nature. Preserving life.[™]

Call Outline

- Goal
- Process
- Key Variables
 - Trophic Level
 - Alkalinity
 - Temperature
 - Depth
- Integration of Variables into Types
- Distributable Information
- Web Mapping Service

Goal: A classification and map of waterbodies in the Northeast

Product is not intended to override existing state or regional classifications, but is meant to complement and build upon existing classifications to create a seemless eastern U.S. aquatic classification that will provide a means for looking at patterns across the region.

Counterpart to the NE Aquatic Habitat Classification

Olivero, A, and M.G. Anderson. 2008. The Northeast Aquatic Habitat Classification. The Nature Conservancy, Eastern Conservation Science. 90 pp. <u>http://www.rcngrants.org/spatialData</u>

Steering Committee

lop

State/Federal	Name	Agency	
EPA	Jeff Hollister	Environmental Protection Agency	
ME	Dave Halliwell	Department of Environmental Protection	Develo
	Douglas Suitor	Department of Environmental Protection	frama-
	Linda Bacon	Department of Environmental Protection	name-
	Dave Coutemanch	The Nature Conservancy	work
NH	Matt Carpenter	Division of Fish and Game	
VT	Kellie Merrell	Department of Environmental Conservation	
МА	Richard Hartley	Department of Fish and Game	Share
	Mark Mattson	Department of Environmental Protection	
ст	Brian Eltz	DEEP Inland Fisheries Division	data
NY	Greg Edinger	Natural Heritage Program	
	*David Newman	Department of Environmental Conservation	
PA	Dave Arnold	Fish and Boat Commission	Review
	Barbara Lathrop	Department of Environmental Protection	results
MD	*Sherm Garrison	Department of Natural Resources	results
NJ	Christopher Smith	Department of Environmental Protection	
RI	*Elizabeth Herron	URI Watershed Watch	
DE	*Kevin Kalasz	Department of Natural Resources and Conservation	
wv	Brett Preston	Department of Natural Resources	
VA	*Brad Fink	Department of Game and Inland Fisheries	
	* unable to be on steer	ing committee but advised and provided data as possible	

Reviewed Existing Classifications and Variables

	Sum Count	Sum Dominant	NAHCS	ME GIS	NH GIS/ Biotic	MA Living Waters	MA Heritage	VT Heritage	NY Heritage	CT Heritage	CT Fisheries	PA Heritage	VA Heritage	NJ Heritage	NJ Cold Water	MA Cold Water	NLA
•Water Chemistry	11	ph/ANC	ANC/pH	ANC/pH , shoreline wetlands	ANC	рН	рН	рН	pH/ANC, salinity	pH/ANC		pH/ANC	Sinkhole	pH/ANC			
•Physiography	6	Elevation (temperature proxy?)	Elevation	Elevation		Elevation		Elevation					Elevation				Ecoregio
•Stratification	5	Stratified in summer (temperature proxy?)	Depth	Depth	Depth	Depth			Stratific ation								
•Temperature	2	Cold Water Habitat/Trout Production									<19C >4mg/l DO				<21C > 4mg/I DO	<70F >5mg/l DO	
•Groundwater Linkage	5	Coastal Plain				Coastal Plain	Coastal Plain		Coastal Plain				Coastal Plain	Coastal Plain			
•Morphometry	5	Size	Size, Shoreline sinuosity	Size, Shoreline sinuosity	Size	Size			Size								
•Genesis	4	Man-made				Kettle			Oxbow, Impoun ded lake			Glacial					Man-ma
Tropic State	3	Trophic						Trophic	Trophic		Trophic						
•Lake Hydrology	2	Stream Connected	Connection to streams	Connection to streams													
•Retention time																	
•Color and Clarity																	

The goal was to agree on a few key variables that apply to the whole region and could be mapped.

Final Variables

- Temperature
- Trophic Level
- Alkalinity
- Depth

These were unanimously agreed on by the steering committee

Approach for each Variable

- Clarified ecological relevance
- Defined classes that correspond to observable biological changes
- Compiled known samples for Eastern waterbodies
- Developed predictive model based on waterbody and landscape attributes for unsampled waterbodies

Accuracy and Confidence

- Required all models to have error rates less than .30 (the standard)
- Calculated a confidence score for each variable in each waterbody
- Waterbody X Probability Very Cold = 60% Probability Cold-Cool = 30% Probability Warm = 10%

Waterbody Y Probability Very Cold = 40% Probability Cold-Cool = 38% Probability Warm = 22% Difference = 30% = High

Difference = 2% = Very Low

Confidence Classes

1.	Very Low <5%
2.	Low >=5 <10%
3.	Medium >=10 <25%
4.	High >=25%
5.	Known

Information on predictions and confidence are in the attribute table

1.1	M)	lakes_all_attri	outes.xlsx										Σ3
		А	В	С	D	E	F	G	Н	I.	J		-
Sec.	1	COMID	GNIS_NAME	STAT	IN_ALK	PROB_HALK	PROB_MALK	PROB_LALK	CLASS_ALK	ALK_DIFP	ALK_CONF		
	911	1031497		ME	0	0.193750	0.536250	0.270000	Medium Alk	0.266250	4. High >=25%		
	912	1031499	Parker Bog Ponds	ME	0	0.176250	0.516250	0.307500	Medium Alk	0.208750	3. Medium >=	10 <259	%
	913	1031503	Little King Lake	ME	0	0.011250	0.420000	0.568750	Low Alk	0.148750	3. Medium >=	10 <259	%
	914	1031505	Call Pond	ME	0	0.018750	0.498750	0.482500	Medium Alk	0.016250	1. Very Low <	5%	
	915	1031511	Felker Pond	ME	0	0.012500	0.402500	0.585000	Low Alk	0.182500	3. Medium >=	10 <259	%
	916	1031513		ME	0	0.018750	0 537500	0 443750	Medium Alk	0.093750	$2 \mid 0 \le 5 \le 10$	1%	

For Each Variable....

- Ecological Importance
- Classes Used
- Starting Data Map
- Final Results Map
- Driving Variables
- Model Error and Confidence

Temperature Class

Water temperature is critical in the life of aquatic organisms (fishes, amphibians, reptiles, invertebrates). It sets the physiological limits where these lake organisms can persist. Seasonal changes in water temperature often also cue reproduction, migration, influence growth rates of eggs and juveniles, and can affect the body size and therefore the fecundity of adults.

Water temperature in lakes

Temperature Class Coldest water present in the summer

Presence of greater than 1 meter of following habitat throughout the summer (use July/August profile if available).

1. VERY COLD: <12.8C and >=5 mg/l DO or indicator fish = lake trout reproduction

Combined into — Cold-Cool 2a. COLD: 12.8C<=18C >=5 mg/l DO or indicator fish = wild brook trout reproduction

2b. COLD-COOL: >18<=21C, >=4 mg/l DO or indicator fish = non-reproducing brook trout, holdover or reproduction of brown trout, kokanee, smelt

3. WARM >21C

Results

Class	# output	# input	Total	Percent
Very cold	1,262	529	1,791	6
Cool to cold	7,502	811	8,313	26
Warm	21,643	790	22,433	69
Grand Total	30,407	2,130	32,537	100

Temperature: Best Predictors

- Latitude
- Maximum and mean depth
- Longitude
- Elevation
- Fetch
- Emergent wetlands in the 100m buffer

These variables make ecological sense given the strong influence of depth and fetch on lake stratification. Cooler climates in the more northern and higher elevation parts of the region also have cooler seasonal air temperatures.

Confidence

Temperature Model	% Waterbodies
1. Very Low <5%	10%
2. Low >=5 <10%	10%
3. Medium >=10 <25%	24%
4. High >=25%	50%
5. Known	7%
Grand Total	100%

Northeast Lake and Pond Classification Confidence of prediction values for temperature

Trophic Level

Trophic level: Meaning "nourishment." Used to describe the level of productivity of a lake.

<u>Oligotrophic: (<=2 ug/L Chlorophyll-a)</u> A nutrient poor lake. Low biological productivity, High transparency

<u>Mesotrophic (>2 -7ug/L Chlorophyll-a)</u>: A lake that is moderately productive.

Eutrophic (>7-30 Chlorophyll-a) : A well-nourished lake, very productive, A balanced and diverse array of organisms. Low transparency due to high algae and chlorophyll-*a* content.

<u>Hypereutrophic: (>30 ug/L Chlorophyll-a)</u> Characterized by an excess of nutrients. Algal blooms, vegetative overgrowth, low biodiversity.

A eutrophic lake, characterized by algal blooms

Results

Class	# output	# input	Total	Percent
Hypereutrophic	3,464	1,996	5,460	17
Eutrophic	7,167	7,534	14,701	45
mesotrophic	3,958	7,575	11,533	35
Oligotrophic	368	511	879	3
Grand Total	14,957	17,616	32,573	100

Trophic Level: Best Predictors

- % Natural cover
- Longitude
- Maximum depth
- Latitude
- Elevation
- % Deciduous forest
- % Agriculture

These variables make ecological sense given the geographic patterns, the strong influence of depth, and the strong influence of nutrient inputs from local development and agriculture.

Confidence

Trophic Model: Confidence Class	% Waterbodies
1. Very Low <5%	4%
2. Low >=5 <10%	4%
3. Medium >=10 <25%	10%
4. High >=25%	29%
Known	54%
Grand Total	100%

Alkalinity

Acid Neutralizing Capacity ANC indicates sensitivity to changes in pH. ANC is primarily determined by the soil and underlying geology of the surrounding watershed. Waterbodies in limestone watersheds have higher pH and higher ANC

Inland Calcareous Lake Shore

Timothy Howard

Alkalinity Classes High Alkalinity >=50 mg/L Medium Alkalinity >=12.5 & < 50 mg/L Low Alkalinity <12.5 mg/L

Results

Class	# output	# input	Total	Percent
Low Alk	9,504	1,903	11,407	35
Medium Alk	11,824	973	12,797	39
High Alk	7,902	431	8,333	26
Grand Total	29,230	3,307	32,537	100

Alkalinity: Best Predictors

- Latitude
- Longitude
- % calcareous bedrock
- % natural cover
- Elevation
- % evergreen forest
- % acidic granitic bedrock
- % agriculture

These variables make ecological sense given the geographic patterns and the particularly strong influence of calcareous bedrock (limestone, dolomite, dolostone, marble) on buffering capacity.

Confidence

Alkalinity Model: Confidence Class	% Waterbodies
1. Very Low <5%	14%
2. Low >=5 <10%	13%
3. Medium >=10 <25%	27%
4. High >=25%	36%
Known	10%
Grand Total	100%

Depth: Lake vs Pond

Ponds = light penetration to the bottom, photosynthesis throughout.

Lakes = areas where light does not penetrate, profundal zone with no photosynthesis.

Depth Threshold
depends on water clarity:
Oligotrophic <30ft
Mesotrophic <20ft
Eutrophic <10ft

I	Lake	7023	22
F	Pond	25,628	78
C	Grand Total	32,651	
3.8 2		C	

Waterbody Types: 3 Variables

First: Split by depth into lakes and ponds.

Second: Further classified by 2 variable combinations

- Temperature + Trophic:
 12 types
- Temperature + Alkalinity:
 9 types
- Trophic + Alkalinity:
 12 types

Temperature plus Trophic Example: Very Cold Oligitrophic Lake

Temperature and Alkalinity

Example: Very cold, acidic pond

Trophic and Alkalinity Example: Eutrophic, Highly Alkaline Lake

Four Variable Classification Example: Warm, hypereutrophic, highly alkaline, pond

- Waterbodies were assigned a four-variable code that combined their class for temperature, trophic state, alkalinity, and depth.
- Four variable integration results in 68 waterbody types: 35 lake types and 33 pond types.
- Waterbodies were called "unclassifiable" if three or more of their variables had very low confidence scores (2% of all waterbodies)

Most Common Lake and Pond Types

LAKES

PONDS

Warm, Eutrophic, Medium Alk	1305	Warm, Eutrophic, Medium Alk	4950
Warm, Eutrophic, High Alk	880	Warm, Eutrophic, High Alk	3424
Cool to cold, Mesotrophic, Low Alk	748	Cool to cold, Mesotrophic, Low Alk	3360
Very cold, Mesotrophic, Low Alk	670	Warm, Hypereutrophic, Medium Alk	2334
Warm, Eutrophic, Low Alk	446	Warm, Mesotrophic, Low Alk	2334
Warm, Mesotrophic, Low Alk	383	Warm, Hypereutrophic, High Alk	1999
Warm, Mesotrophic, Medium Alk	366	Warm, Eutrophic, Low Alk	1517
Cool to cold, Mesotrophic, Medium Alk	288	Warm, Mesotrophic, Medium Alk	1201
		Cool to cold, Mesotrophic, Medium	
Very cold, Oligotrophic, Low Alk	281	Alk	843
Cool to cold, Eutrophic, Medium Alk	220	Cool to cold, Eutrophic, Low Alk	468

CONSERVATION GATEWAY

Download: Report and Data

• Report

Spatial Data:

waterbodies with simple attribute table, .lyr files for ArcGIS display

Tabular Excel Data: waterbodies with 140+ attributes used the modeling

Database of Attributes

Waterbodies codes with 140+ attributes

- Lake Morphometry: surface area, max depth, mean depth, fetch, shoreline complexity...
- **Buffer Characteristics**: 100m, 500m and 1000m buffer land cover, geology, impervious surface, baseflow index
- Presence and type of dam
- •
- Chlorophyll a, Alkalinity, Temperature : State/federal sample data and values averaged for each waterbody
- Confidence and probabilities for every waterbody

Web Map

http://bit.ly/1sVYyOQ

- Short text about each classification variable
- View and zoom in on a map of each attribute
- Click on polygon to get simple attribute table displayed
- View one simplified
 2 Variable
 classification:
 Temperature and
 Trophic

Web Map: Temperature

Web Map: Trophic

Web Map: Alkalinity

🚱 http://tnc.maps.arcgis.com/apps/MapJournal/index.html?appid=5ef31a70fa4e40d19980beaf4766e448

P → C × S Northeast Lakes and Ponds... >

<u>File Edit View Favorites Tools H</u>elp ★ Share Browser WebEx ★

The Nature Conservancy Eastern Conservatio... 🖪 🎔 🧷

Northeast Lakes and Ponds Classification

Alkalinity

Alkalinity and acid neutralizing capability (ANC) are measures of how well compounds like bicarbonate ions can buffer water from acidification. ANC of a lake is primarily determined by the soil and underlying geology of the surrounding watershed. Lakes with high ANC (limestone watersheds) are able to neutralized acid deposition and buffer the effects of acid rain. They can maintain higher pH. Conversely, granite and sandstone dominated watersheds contain fewer acid neutralizing ions, ANC, and therefore a predisposition to acidification and low pH. This classification recognizes 3 levels of alkalinity :

- High Alkalinity: >50 mg/L
- Medium Alkalinity: 12.5 to 50 mg/L
- Low Alkalinity: <12.5 mg/L

Click on a lake or pond polygon to get a pop-up displaying all attributes of the lake.

Light Penetration

Ponds have light penetration to the bottom of the waterbody allowing photosynthesis throughout. Lakes

Web Map: Lakes vs. Ponds

Web Map: Combining Variables

Web Map: Pop Up

Online - East 🗍 httpsconnect.tnc.or 🗍 SIFN Classi	ification Exp.,		w ⊫ ♥ 11
	······································		
		 LEGEND Temperature and 	. 3
ation	1	Tronhic	×
Giens Falls	Lake Classif Lake	ication: Cossayuna	î F
1 - 3 S /	Lake Name	Cossayuna Lake	e = 1
ure and	State	NY	
	Surface area (acres)	631.08	
iables into a	Maximum dej (meters)	pth 12.31	
plified map of	Trophic class	Mesotrophic	
Gansevoort	Alkalinity clas	s Medium Alk	
ving all attributes of	Temperature class	Very cold	-

Webmap: Download Report and Data

Thank You!

Matt Carpenter and NEAFWA for envisioning and guiding this project

Andrew Milliken and Scott Schwenk of the North Atlantic LCC for support in making it a reality.

Jeff W. Hollister of EPA and all the individual State Departments of Fish and Wildlife, Environmental Management, and Natural Resources for sharing their data on the regions waterbodies Without their dedication and hard work to collect this data, our project would not have been possible.

The Lake Steering Committee for feedback, reports, coordinated data sharing, and review.