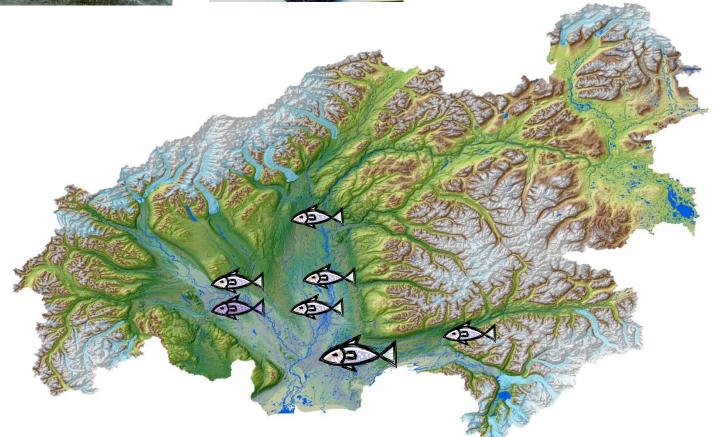
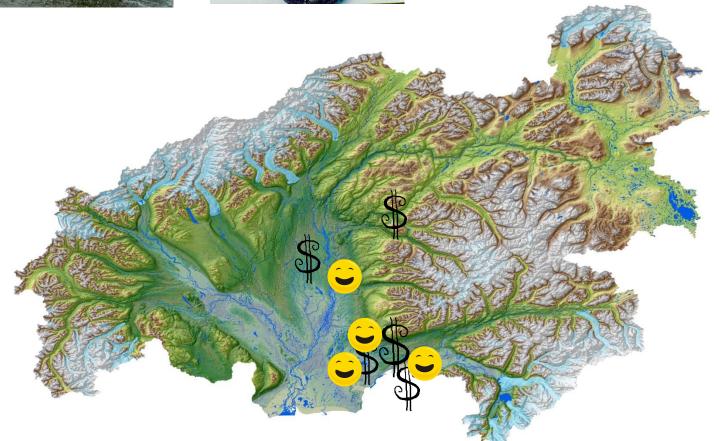
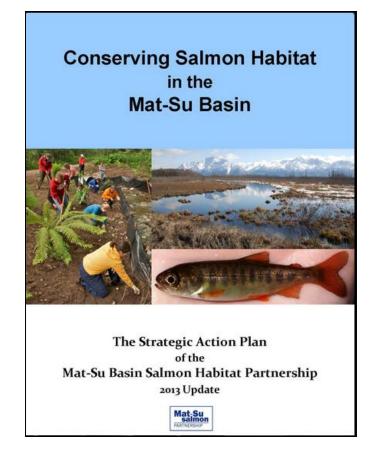
Salmon Habitat Mapping in the Mat-Su Basin

Understanding resource values

Landscape-scale planning and prioritizing for sustainable development, conservation, and restoration requires spatially explicit, landscape-scale information on distribution and abundance of resources.


Salmon values


Salmon values



"identify important habitats for salmon and other fish species in the Mat-Su Basin"

"help identify critical habitat for salmon at each life stage."

Objectives

- Describe and synthesize spatially explicit information on salmon spawning habitat distribution and abundance
- Use new digital elevation models, landscape –based mapping tools, and local fish-habitat studies to improve mapping of juvenile salmon habitat
- Identify information gaps and describe potential future research activities

Spawning abundance and distribution

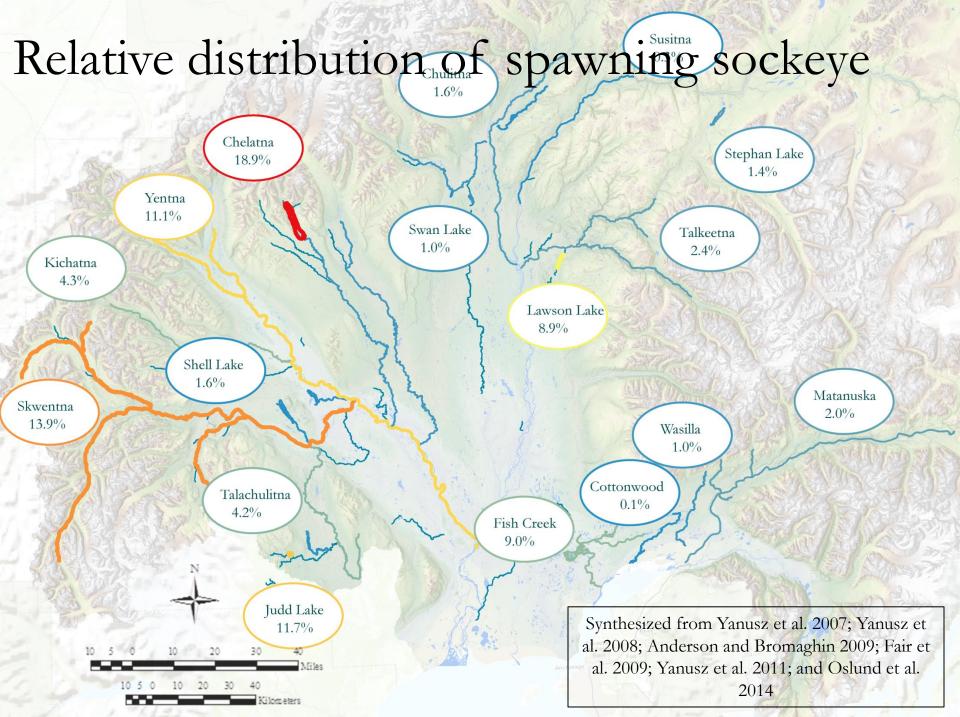
- Anadromous Waters Catalog
- Catch and Escapement Data
- Indexes of Productivity
- Spawning surveys

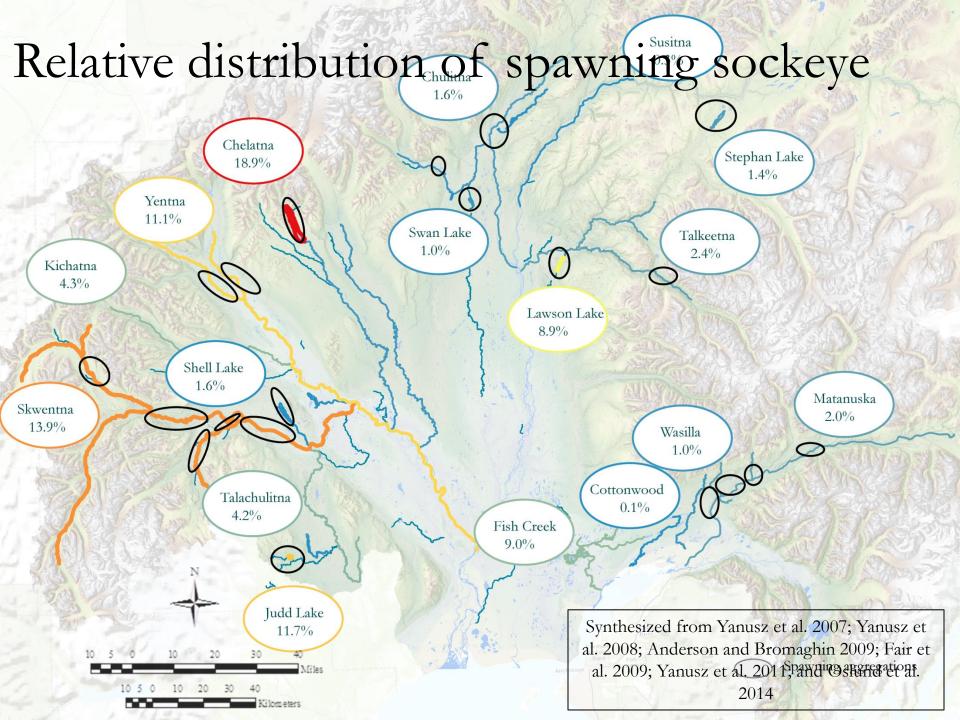
Spawning abundance

Table 38.-Eastside and westside Susitna River drainage coho salmon escapement counts, 1981-2012.

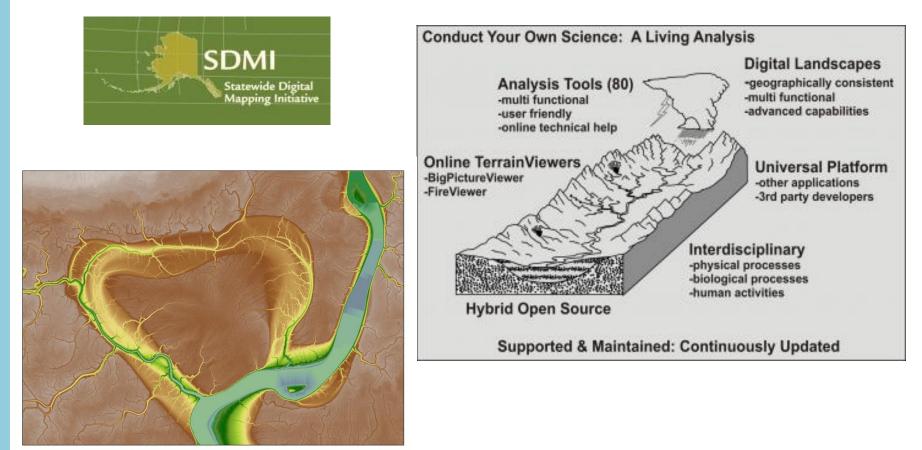
	-		Wests	ide Susitna M	anagement	Unit	Eastsie	le Susitna M	anagement	Unit ^a		
					Rabideux		Birch	Question	Answer			
•	\mathbf{W}		Ventna		Creek	2	Creek	Creek	Creek		Susitna	
•	What scale	e are	data	aval	laple	Total	index	index	index	Total	River ^d	Total
	-	1981	17.017		e	17,017	e	e	e	e	37,000	54,017
		1982	34,089		e	34,089	e	•	e	e	80,000	114,089
		1983	8,867		e	8,867	e	• •	e	e	24,000	32,867
		1984	18,172		480	18,652	236	60	57	353	e	19,005
		1985	9,181		82	9,263	30	89	9	128	e	9,391
	xx771 · 1	1000		• 1	e	23,457	25	e	1 • •		e	23,482
•	Which est	117982 to	- 56.279 t	abu	ndar		are	east	b12S	ed?	e	6,534
	vv men est	1988	12,173	abu	230	12,403	63	337	160	560	e	12,963
		1989	25,695		20	25,715	180	31	66	277	e	25,992
		1990	21,346		20	21,366	36	41	6	83	e	21,449
		1991	57,275		185	57,460	300	492	51	843	e	58,303
		1992	29,073		e	29,073	167	227	181	575	e	29,648
		1002	37,752		e	37,752	178	370	34	582	e	38,334
•	Do differ	+19941		otion	c 1850	25.278	024		nal	563	e	25,841
•	Do differe		opul	auon	IS CO	vary	O¥6	er tr		317	e	87,586
		1996	34,420		e	34,420	458	238	43	739	e	35,159
		1997	13,670	8,063	114	21,847	217	186	57	460	e	22,307
		1998	24,769	6,773 °	56	31,598	356	519	45	920	e	32,518
		1999	37,933	4,563 °	169	42,665	153	128	470	751	e	43,416
		2000	40,921	26,387	354	67,662	809	1,040	899	2,748	e	70,410
_	тт •	2001	47.077			77,660	1,470	450	371	2,291	e	79,951
•	How varia		ireses	stima	tes?	99,702	1.158	1,010	249	2,417	e	102,119
		2003	45,222	17,305	344	62,871		407	131	538	e	63,409
		2004	92,343	62,940	e	155,283	e	822	111	933	e	156,216
		2005	76,890	47,887	e	124,777	1,014	537	35	1.586	e	126,363
		2006	132,889	59,419 °	3063	195,371	883	299	270	1,452	e	196,823
		2007	39,957	10,575	e	50,532	167	241	26	434	e	50,966
		2008	33,934	12,724	10,043	56,701	798	273	382	1,453	e	58,154
		2009	j	27,348	345	27,693	219	9 1	166	394	e	28,087
		2010		10,393	161	10,554	117	41	2	160	e	10,714
		2011		7,508 °	58	7,566	76	94	116	286	e	7.852
		2012		6.825	e	6,825	276	75 1		351		7,176
		Averages						100	241223	0.00		
		1981-2010	39,110	24,216	869	49,111	377	327	149	807	47,000	54,537
		2001-2010	70,904	27,387	2,435	86,114	728	409	174	1,166		\$7,280
		2006-2010	-	15,260	3,403	68,170	437	173	169	779		68,949
	-		-	15,260			437	173	169	779		68,9

* Survey conducted by walking portions of the creek.

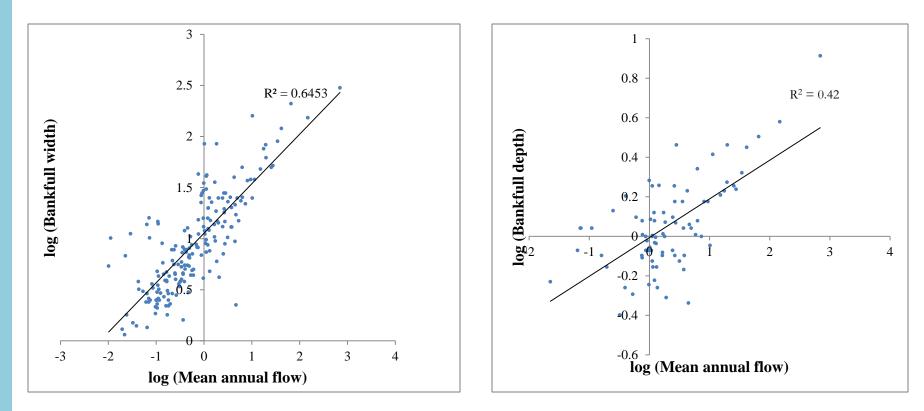

^b Sonar counts, dates of assessment vary; estimates for 1981-1984 encompass the entire coho salmon migration (Davis 2000). All estimates from 1985-2008 are partial because Yentna River sonar shut down before the end of the coho run. Yentna River 2005 and 2006 coho salmon estimates reported by Westerman and Willette (2007a-b).


Oslund et al. 2014

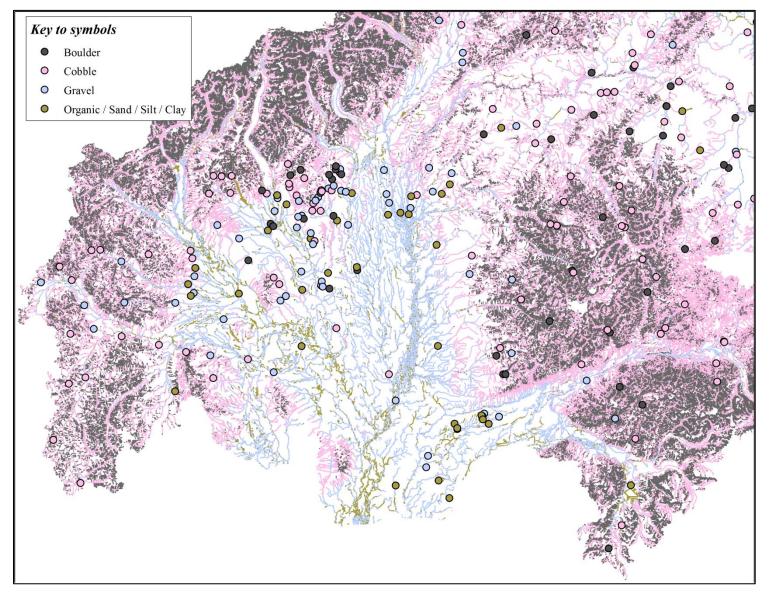
Relative distribution of spawning sockeye


Kilom eters

Synthesized from Yanusz et al. 2007; Yanusz et al. 2008; Anderson and Bromaghin 2009; Fair et al. 2009; Yanusz et al. 2011; and Oslund et al. 2014



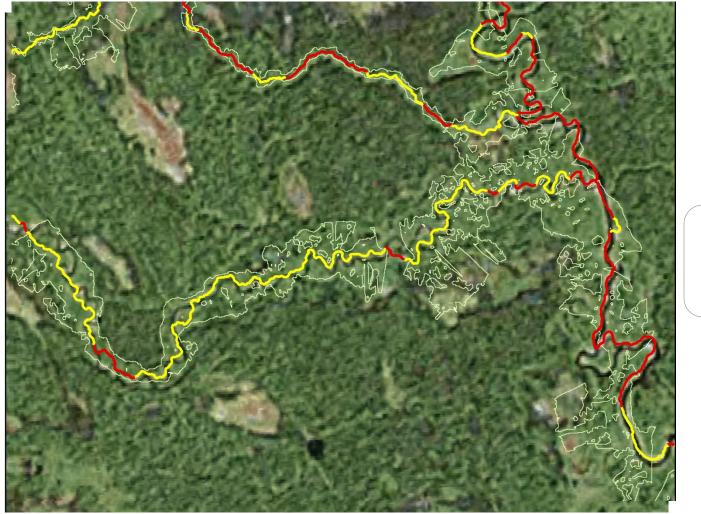
Juvenile habitat mapping

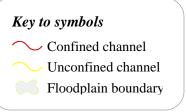


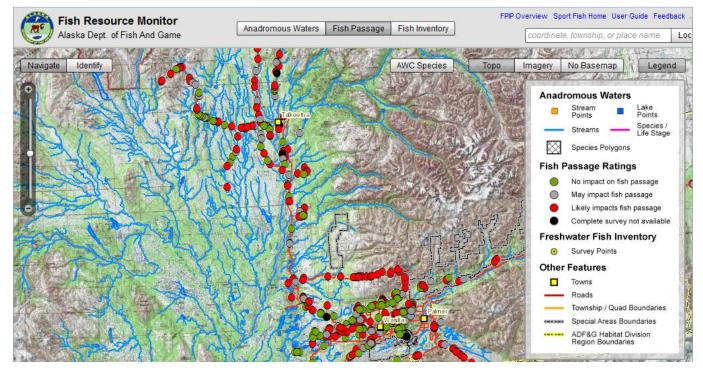
• Mean annual flow = $10^{-1.33}$ FA^{0.96} P^{1.11} (Parks and Madison 1985)

Width = $11.3 \text{ MAF}^{0.48}$

Depth = 0.98 MAF $^{0.20}$




- Elevation
- Gradient
- Glacial extent
- Beaver habitat likelihood
- Sinuosity
- Braiding
- Relationship to lakes
- Relationship to wetlands
- Floodplain width and confinement
- Road density
- Wood accumulation probability



• Man-made barriers

- Natural barriers:
 - i) 1200 foot stream segments exceeding 8% gradient
 - ii) Waterfall barriers: 4 meters relief over a 10 meter stream segment

Local studies

- Importance of wetlands (ARRI Davis and Davis 2010)
- Coho seasonal habitat use in Big Lake watershed (USFWS Gerkin and Sethi 2013)
- Coho habitat use in Little Susitna (USFWS/UAF Foley 2014)
- Fish assemblage patterns (ADFG Kirsch et al. 2014)
 - Coho salmon: Temperatures Elevation
 Chinook salmon: Elevation
 Channel width
- Susitna seasonal habitat use (Susitna-Watana 1980s and 2013)
 - Habitat suitability curves for coho fry: (depth, velocity, cover, temperature, upwelling)
 - Macro and meso habitat associations for juvenile Chinook, coho, and sockeye
- Limnological sockeye salmon studies (CIAA, ADFG)

Proposed models

• Summarize all methods and previous studies; propose models by species for summer and winter habitat

h bearing definitions. Habitat Intrinsic Potential-Coho	-			run selec								Lind	-	10%
Oncorhynchus kisutch	•	0	nly. Wil	l ignore n	ion-fish b	earing.								E P
Choose parameters (must be sequential)		Min	Set Da	ta Divisio	n (upper	bounds)	Max	Se	t rank	ing gi	radier	ts for	divisio	ns (0-1)
Reach Gradient	-	-0.05	0	0.05	0.1	0.15	0.2	0.5	0.5	0.5	0.5	0.5	0.5	G
Stream Order (Strahler)	-	1	2	3	4	5	6	0.5	0.5	0.5	0.5	0.5	0.5	G
WOOD ACCUMULATION TYPES	-							0.5	0.5	0.5	0.5	0.5	0.5	G
Beaver Habitat	-	0	0.2	0.8	0.6	0.8	1	0.5	0.5	0.5	0.5	0.5	0.5	G
	-							0.5	0.5	0.5	0.5	0.5	0.5	G
	-							0.5	0.5	0.5	0.5	0.5	0.5	G
		Select	from prev	viously save	ed files:									

• Workshop in January

Interested?

cwoll@tnc.org

Future applications

- Future research
- Data publicly available

• Economic geography of salmon (ISER and ADFG)

UAA Institute of Social and Economic Research UNIVERSITY of ALASKA ANCHORAGE